() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

Similar documents
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

untitled

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Part () () Γ Part ,

量子力学 問題

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Untitled

1 Tokyo Daily Rainfall (mm) Days (mm)

本文/目次(裏白)

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Microsoft Word - CTCWEB講座(4章照査)0419.doc

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e



untitled

I

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

橡博論表紙.PDF

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

pdf

プログラム

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

数学の基礎訓練I


p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Note.tex 2008/09/19( )

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

2000年度『数学展望 I』講義録

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

05Mar2001_tune.dvi

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

untitled

LLG-R8.Nisus.pdf


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

newmain.dvi

untitled

tnbp59-21_Web:P2/ky132379509610002944

TOP URL 1

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

all.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

201711grade1ouyou.pdf

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

抄録/抄録1    (1)V


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

PDF

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

研修コーナー

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

パーキンソン病治療ガイドライン2002

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

: , 2.0, 3.0, 2.0, (%) ( 2.

nsg04-28/ky208684356100043077

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

untitled

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

nsg02-13/ky045059301600033210

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

sec13.dvi

B

QMII_10.dvi

TOP URL 1


1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

6.1 (P (P (P (P (P (P (, P (, P.

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

gr09.dvi

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


( )

Dynkin Serre Weyl

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Transcription:

() [REQ] 4. 4.

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () 0 0 4. 5050 0 ) 00 4 30354045m/s 4. ) 4. AMEDAS

) 4. 0 3

) 4. 0 4. 4

4.3(3) () [REQ] () [REQ] (3) [POS] () ()() 4.3 P = ρ d AnC DG () P Nρ kg/m 3 d m/sa n m C D G 4.4 5

4.4 () [REQ] 3),4),5) ) 4.5 ) 99. ) 004. 3) 997. 4)Simiu, E. and Scanlan, R. H., Wind Eects on Structures, Wiley, 996. 5) 977. 6

),) 4. 3) 4.. 00 00 x n N n x x x LL x i LL x n x n n Fisher-Tippet 3 Gumbel 0 Frechét F V [ { α( V u) }] ( V ) = exp exp (4.) F S [ exp( s) ] s = α( V u) ( s) = exp, (4.) αu I V s = u ln[ ln( FV ( V ))] = u +, s = ln[ ln( FV ( V ))] (4.3) α α V s F(V) 4. 4. s = 0 F V (V) = /e = 0.364 V u /α s µ s = 0.5776 = γ: σ s = π /6 αu 7

.8 α =, u = V 0. 450σ σ V V (4.4) V σ V V ) 4. 50 40 V (m/s) 30 0 0 0 - - 0 3 4 5 6 s 4. 70 V T T T V T 8

V T T F V (V) T F V (V) T = F V ( V (4.5) T ) (4.3)(4.5) i P i P i = i ( n +) = ( i ) ( n +) P i P i ( i ) n P i ( i a) ( n + a) Gumbel Pareto = Hazen = Gringorten a 0.44 Hazen ) 00 Gomes&Vickery 4) Rice Weibull R = ln R + a (4.6) / k c ln = N + ( k ) ln c a = k c k c k N πν β ( kσ c) = / R R k c σ β 675 0.36 ν β 5 965-969 ν 9

3 ) V V V 3 V 4 V 5 V x, x, L, x N V = β LL 0 + βx + βx + + β N x N (4.7) β, β, L, β N 4.3 0

No Yes 4.3 4..3 5 Region Speciic Model Site Speciic Model

4.4 5) 50 5,000 V (m/s) 60 50 40 30 0 0 0 () (3) () () 0 () a (3) b 0-0 4 6 8 0 - ln{- ln(f (V )} V (m/s) 60 50 40 30 0 (5) (4) (3) b (4)40 (5)80-0 4 6 8 0 - ln{- ln(f (V )} (3) 4.4 /500/0,000

6) /000 4.5 BCD S W 40m 30 4.6 B 40m 4.7 B 0m B B.5.4.3.. 0.9 0.8 0 45 90 35 80 5 70 35 6) 6) 4.5 4.6 40m Site B N wind 00m 6) 4.7 3

4. u z z = ln (4.8) k z 0 z zm u * k ( 0.4) z 0 α z z = 0 (4.9) 0 α /0/7 /6/4 /4/ 7) 4 4. z b z b z b 4.8 7) 4. z b (m) 5 0 5 30 α 0. 0.6 0. 0.9 z G (m) 500 600 700 700 Z 0 (m) 0.0 0.05 0.3.0 4

7) 4.8 3 xyz VW uvw x u yv v zw w VW 0 uvw I u σu σv σw = I v = I w = (4.0) σ u σ v σ w uvw 4.9 4. 8) 5

0.8 0.6 0.4 0. 0.8 0.6 0.4 0. 0 0 5 0 5 0 5 0 0 5 0 5 0 5 (m/s) (m/s) 8) 4.9 (m/s) (m/s) Iu (%) 8) 4. 0 3:9 ~ 3:39 (m/s) 3:39 (m/s) Mar.7/998 ~ 3:49 Iu (%) (m/s) (m/s) Iu (%) 3:49 ~ 3:59 0.8 3. 4:3 4.5 ~ 38.9.08 4:3 7.0.6 33. 4.3 4:3 Sep./998 ~ 39..98 4:33 6.6. 8.3 4:43 4.5 ~ 4.8.30 4:53 6.38 Karman Bush&Panosky u S ( ) = 0.475 σ u β + β 5 / 6,β =.78 0 6 αk r I u 0 ( m 3) α z 0 K r m α 0 (4.a, b)

7 6 5/ 70.8 4 ) ( + σ = L L S x u x u u u (4.) 6 / 83. 755. 4 ) ( + + σ = L L L S x w x w x w w w (4.3) x u L x w L Bush&Panosky + σ = 3 5 max max.5 0.63 S r r w w (4.4) r = Z/ z max = 0.3 = x k j S i S j i S j i ij exp ), ( ), ( ),, ( (4.5) k 55 x ESD η η η η = ) ( ) ( 0.994 ), ( ), ( ),, ( 6 / 6 / 6 5 / 6 5 / K K j S i S j i S j i ij (4.6)

x L η = 0.747 + 70.8 L L K 5/6 K /6 4.0 9) 9) 4.0 4.3 4. + u = ( + u x &) A n C D (4.7) P ρ x& P = ρ = ρ ( + u + x& + u x& ux& ) A C ρ( + u x& ) A C n D + ρua C n D ρxa & C n D 8 n D 3 A C n D (4.8)

x + u P 4. 6 6 4. Drag Lit Side orce Pitching moment 4 D L S m m m M m = ρ d BCD = ρ d BCL = ρ d BCS = ρ d B C M (4.9a, b, c, d) B C D C L C S C M 4.3 3 ) H 3 4.4 4.5 ) 9

4. ) 4.3 3 0

4.4H 3 Re =. 0 5 ) 4.5 3 Re =. 0 5 ) 0).9

Db = ρ d B Lb = ρ d B M b = ρ d B u w [ C χ u + C χ w] u w [ C χ u + ( C + C ) χ w] L D L u w [ C χ u + C χ w] M D M D L D M D M L (4.0a, b, c, d) 0 F = D, L, or M, r = u or w uw uw r χ F L M D ae ae ae = πρb = πρb = πρb ω L 4 yr ω M ω D y + L yr yr yi y + M y + D y& + L ω yi yi zr y& + M ω y& + D ω z + L zr zr zi z + M z + D z& + L ω zi zi θr z& + M ω z& + D ω θ + L θr θi θr θ + D θ& ω θ + M θi θi θ& ω θ& ω (4.a, b, c) ω yzθ L yr, L yi,., D θi Scanlan Flutter Derivative )

L M D ae ae ae = ρ d = ρ = ρ B KH d B KA y& B KP d y& + KH + KP y& + KA Bθ& + K Bθ& + K Bθ& + K H θ + K A θ + K 3 3 3 P θ + K P H A 4 4 4 y B y B y B + KH + KA + KP 5 5 5 z& + K z& + K z& + K P A 6 H 6 6 z B z B z B (4.a, b, c) K= ωb/ P * i H * i A * i i = - 6 4.4 4.4. d d 0 α z d = 0 (4.3) 0 0 H 4.6 7).6 0.8.6 B/D I 0.8 5cm 4.7 4.8 7) 7) C. 0.( B / D) B / D < 8 = d.3 8 B / (4.4) D 3

C =.35 φ ( 0. φ 0.6) (4.5) C =. 6 d d φ.6 0.8 0.8.6.6 0.8 0.8.6 0.8.6 4

7) 4.6 5

) 4.7 4.8 Re =. 0 5 ) 6

G G G 0).9 G 0) 7

( 4.0 0.( B / D) ) D B / D < 8 P( kn / m) = (4.6).4D 8 B / D 6 kn/m /.5 kn/m p ( kn / m ) =. 5 φ (4.7) p ( kn / m ) = 3. 0 6 kn/m 3 kn/m /.5 kn/m p ( kn / m ) = 3. 0 (4.8) p ( kn / m ) =. 5 /=.5 kn/m =.5 kn/m / 0.8 4.3 8

4.3.3 S h S h 0.5 B.3.3 0.5 B < S h.5 B.3 S v 0.5 D 0.3 0.5 D < S v.5 D.0.5 D < S v.5 D..5 B < S h.5 B.3.0.6 0.8 4.4 4.4 kn/m 0.75.5.5 3.0 k V FV ( V ) = exp c (4.9) V k ( V ) = c c V exp c k k (4.30) kc k c 9

k c µ = Γ + σ = Γ + Γ V c, V c + k k k (4.3),(4.3) Γ 4.9 ) ) 4.9 k k = 7) P( ) = exp 0.66 50.46 (4.33) P()0 50 50 d /.07 30

4.5 7) m/s = B (4.34) cvh. 0 h EhEth mh c = B (4.35) m δ r h m/s θ =. 33 θ B (4.36) cv E deg θc = I θ pr E δ tθ θ h θ Hz B m ρ kg/m 3 m r I pr = m ρb (4.38) m r I pr ( ) 4 ( ρb ) (4.37) = I (4.39) p mi p kg/m kgm E h 0.065β ds = = ( B / d ) ( ) 3 7.6β E ds θ (4.40, 4.4) B / d d m β ds d /4 βds = (4.4) E th E tθ ( B / d ) / I 0 ( B / d ) / I 0 E th = 5 βt u (4.43) E th = 0 βt u (4.44) β t 0 c m/s =. 5 B (4.45) θ m/s 3 = B (4.45) cg 8 h = B (4.46) cg 4 h

977. 997. 988. Gomes, L. and Vickery, B. J., On the Prediction o Extreme Wind Speeds rom the Parent Distribution, J. o Wind Engineering and Industrial Aerodynamics, Vol., No., pp.-36, 977. Vol.9, No.3, pp.-7, 004. Vol.36, No.8, 00. 99. 003. Toriumi, R., Katsuchi, H. and Furuya, N.: A Study on Spatial Correlation o Natural Wind, J. o Wind Engineering and Industrial Aerodynamics, 87, pp.03-6, 000. 00. Simiu, E. and Scanlan, R. H., Wind Eects on Structures, Wiley, 996. 3