/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

Similar documents
陦ィ邏・2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

ŠéŒØ‘÷†u…x…C…W…A…fi…l…b…g…‘†[…NfiüŒå†v(fl|ŁŠ−Ù) 4. −mŠ¦fiI’—Ÿ_ 4.1 −mŠ¦ŁªŁz‡Ì„v”Z

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1


ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16

研修コーナー

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

量子力学 問題


‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

パーキンソン病治療ガイドライン2002

renshumondai-kaito.dvi

Morse ( ) 2014

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


30 (11/04 )


untitled

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

Untitled

Part () () Γ Part ,

FX ) 2

FX自己アフリエイトマニュアル

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1


p.2/76

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

QMII_10.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

lecture

ver Web

DVIOUT

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

LLG-R8.Nisus.pdf

A

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

TOP URL 1

a s d

a s d

所得税の確定申告の手引き

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

pdf

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2



本文/目次(裏白)

³ÎΨÏÀ

6.1 (P (P (P (P (P (P (, P (, P.

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)


16 B

newmain.dvi

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘

aphp37-11_プロ1/ky869543540410005590

本文/扉1

プログラム


Transcription:

4 4.1 1 2 1 4 2 1

/ 2 4.1.1 n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ λ U λ (local chart, local coordinate) (M3) M A (M, A) (manifold) n (n-dimensional manifold) M M (M4) U λ U µ Φ λµ := ϕ µ ϕ 1 λ : ϕ λ(u λ U µ ) ϕ µ (U λ U µ ) µ, λ Λ C α M C α (C α -class manifold) 0 α α = ω C 0 (topological manifold) 4.1.2 (M1). (M1) M 3 3 M Hausdorff 2

/ 3 R 3 (M2) 18 4 (M2) 5 (a). 2 M M Λ Λ = {1, 2, 3,...} {ϕ λ } λ Λ M U λ M ϕ λ (U λ ) = U λ R 2 M 2 R 2 A ϕ λ : U λ U λ U λ ϕ λ M U λ M (a) M 6 (b). R n Λ λ Λ R n λ 4 (Pierre-Louis Moreau de Maupertuis, 1698 1759) 1738 5 6 U λ R 2

/ 4 4.1: Λ R n λ µ

/ 5 7 (b) λ R n λ ϕ λ U λ A 8 (M3). A M (M, A) M 9 M M A M = (M, A) (M4). A 1 M 1 M M 10 (M4) ϕ µ ϕ 1 λ : ϕ λ(u λ U µ ) ϕ µ (U λ U µ ) (b) (M4) 7 8 (atlas) 16 9 10

/ 6 4.1.3. 1. M 2. A M C C 1 3. M A, A A = A (M, A) (M, A ) 4.2 4.2.1 M = (M, A) M f : M R M f : M R M A M h : M R A {ϕ λ } λ Λ λ ϕ λ (U λ ) = U λ F λ = f ϕ 1 λ : U λ R F λ R n R

/ 7 M 4.2: M = (M, A) f : M R A ϕ λ : U λ U λ F λ = f ϕ 1 λ : U λ R x U λ U µ F λ (ϕ λ (x)) = F µ (ϕ µ (x)) f(x) 11 4.2.2 L.Bers Riemann Surfaces 1 Bers 11

/ 8 Bers M C ρ M C ρ C ρ C 1 C 1 (M4). M C 0 M f : M R C α C 1 C 1 C 1 Bers C 1 C 1 R n C 1 U R n F : U R C 1 x = (x 1,..., x n ) U x i x F x i (x) R C 1 C 1 M C 1 f : M R C 1 ϕ λ : U λ U λ F λ := f ϕ 1 λ : U λ R C 1 f f M 12 λ F λ C 1 f R n λ 4.2 C 1 M C 1 12

/ 9 C 1 C 1 f : M R F λ = f ϕ 1 λ : U λ R C 1 U λ U µ µ F µ = f ϕ 1 µ : ϕ µ (U λ U µ ) R C 1 M (M4) C 1 F µ = F λ (ϕ λ ϕ 1 µ ) M C 1 ϕ λ ϕ 1 µ C 1 F λ C 1 F µ = F λ (ϕ λ ϕ 1 µ ) C 1 F µ C 1 4.3 1 YES M C 1 ϕ λ ϕ 1 µ C1 F µ C 1 ϕ λ ϕ 1 µ F µ. M = (M, A) A = {ϕ λ : U λ R n } λ Λ f : M R M C 0 C 1 ϕ λ : U λ U λ F λ := f ϕ 1 λ C 1 : U λ R M R ϕ λ C 1 C 1 C 1 C α α [0, ] C α

/ 10. C 1 F λ f k f C 1 C 1 13. 1. C n 0 r n r C r 2. 4.3 1 M f : M R p f (2.1,1) 2.3 13

/ 11 M C 1 f C 1. A = {ϕ λ : U λ R n } λ Λ λ, µ Λ A = {ϕ : U ϕ R n } ϕ λ, ϕ µ A ϕ, ψ A 14 ϕ : U ϕ R n ϕ(u ϕ ) R n U ϕ ϕ : U ϕ U ϕ 4.3.1 1 M n = 8 15 M f : M R C 1 1 x, p M x p f(x) f(p) = A(x p) + o( x p ) x p M x p x p M p M ϕ : U ϕ U ϕ R 8 p U ϕ F ϕ = f ϕ 1 : U ϕ R ϕ(x) = x ϕ(p) = p U ϕ f(x) f(p) = F ϕ (x) F ϕ (p) p M f 14 ϕ λ, ϕ µ A λ µ ϕ, ψ A ϕ ψ 15

/ 12. f : M R C 1 ϕ F ϕ = f ϕ 1 : U ϕ R R 8 U ϕ C 1 1 x = (x 1,, x 8 ) U ϕ R 8 p = (p 1,, p 8 ) U ϕ R 8 p F ϕ 1 Taylor F ϕ (x) = F ϕ (p) + a 1 (x 1 p 1 ) + + a 8 (x 8 p 8 ) 1 + o( x p ) a 1,..., a 8 F ϕ p a i = F ϕ(x) x i 0.98 2 = F ϕ (p) x=p x i x p := (x 1 p 1 ) 2 + + (x 8 p 8 ) 2 Taylor a = (a 1,..., a 8 ) F ϕ a x 1 p 1 F ϕ (x) F ϕ (p) = (a 1 a 8 ). + o( x p ) x 8 p 8 F ϕ (x) F ϕ (p) = a (x p) + o( x p ) F ϕ F ϕ = F ϕ (x) F ϕ (p) x x = x p a x f(x) f(p) = a (x p) + o( x p ) f M x p A ϕ x, p U ϕ ϕ x p R 8 ϕ 16 x p 0 ϕ 16 x p U ϕ

/ 13 a R 8 ϕ p f ϕ x, p, a a ψ A p U ψ ψ : U ψ U ψ R 8 x U ψ ψ(x) = y = (y 1,, y 8 ) U ψ ψ(p) = q = (q 1,, q 8 ) U ψ q F ψ = f ψ 1 : U ψ R b = (b 1,..., b 8 ) y q 0 F ψ (y) F ψ (q) = b (y q) + o( y q ) x, p U ϕ U ψ f(x) f(p) = a (x p) + o( x p ) f(x) f(p) = b (y q) + o( y q ) cm x p y q 17. ϕ ψ Φ := ψ ϕ 1 ϕ(u ϕ U ψ ) U ϕ ψ(u ϕ U ψ ) U ψ C 1 M C 1 Φ : p q p 17

/ 14 4.3: Φ 2.2. 8 8 J = (J ij ) 1 i,j 8 x p y q = J(x p) + o( x p ) y 1 q 1 J 11 J 18 x 1 p 1. =...... y 8 q 8 J 81 J 88 x 8 p 8 i (1 i 8) + o( x p ) y i q i = J i1 (x 1 p 1 ) + + J i8 (x n p 8 ) + o( x p ) 1 J ij (1 j 8) J ij = y i(x) x j = y i (p) x=p x j Φ = ψ ϕ 1 p f J = (J ij ) Φ p DΦ Φ J f(x) f(p) x p o( x p ) o( y q ) f(x) f(y) a (x p) b (y q)

/ 15 y q J(x p) u v t u v a (x p) = a (J 1 J(x p)) = t aj 1 J(x p) ( t J 1 a) (y q) b (y q) b = t J 1 a 1 y q J(x p) a = t Jb ϕ ψ p q J = D(ψ ϕ 1 )(p). M C 1 C 1 f : M R p U ϕ U ψ x = ϕ(x) y = ψ(x) p = ϕ(p) q = ψ(p) f(x) f(p) = a (x p) + o( x p ) (x p) f(x) f(p) = b (y q) + o( y q ) (y q) a, b a = t Jb b = t J 1 a J = D(ψ ϕ 1 )(p) p = ϕ(p) F ϕ = f ϕ 1 C 1 a p C 1 J = D(ψ ϕ 1 )(p) p a = t Jb q = ψ(p) b q M C 1 F ϕ C 1 F ψ = f ψ 1 C 1

/ 16. x p y q = J(x p) + o( x p ) y q = O( x p ) y q = J(x p) 18 J = (J ij ) 1 i,j 8 K = max 1 i,j 8 J ij y i q i = J ij (x j a j ) 8K max x j a j 8K x a 1 j 8 1 j 8 y q = 1 i 8 y i q i 2 8 8M x a y q = O( x p ) f(x) f(p) o( y q ) = o( x p ) f(x) f(p) = F ψ (y) F ψ (q) = b (y q) + o( y q ) = b {J(x p) + o( x p )} + o( x p ) = b J(x p) + o( x p ) F ψ (y) F ψ (q) = t b J(x p) + o( x p ) = t ( t J b)(x p) + o( x p ) = ( t Jb) (x p) + o( x p ) F ϕ (x) F ϕ (p) = a (x p) + o( x p ) (a t Jb) (x p) = o( x p ) x p 0 a t Jb = 0 a = t Jb a t Jb c = (c 1,..., c 8 ) x = p + ϵe i e i i 1 0 ϵ 0 c (x p) = c i ϵ o( x p ) = o(ϵ) c i = o(1) a t Jb = c = (c 1,..., c 8 ) c i = 0 c = 0.. ϕ ψ U ϕ U ψ Φ = ψ ϕ 1 J = DΦ 18 x p o( x p ) x p /100