C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Similar documents
30

物性物理学I_2.pptx

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Maxwell


1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

ଗȨɍɫȮĘർǻ 図 : a)3 次元自由粒子の波数空間におけるエネルギー固有値の分布の様子 b) マクロなサイズの系 L ) における W E) と ΩE) の対応 として与えられる 周期境界条件を満たす波数 kn は kn = πn, L n = 0, ±, ±, 7) となる 長さ L の有限

PDF

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

36 th IChO : - 3 ( ) , G O O D L U C K final 1

03J_sources.key

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


QMI_09.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

TOP URL 1

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

meiji_resume_1.PDF

IA

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

振動と波動

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

構造と連続体の力学基礎

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

0201

QMI_10.dvi

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

i Γ

Note.tex 2008/09/19( )

I

Z: Q: R: C: sin 6 5 ζ a, b

untitled

( ) ,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

pdf

高知工科大学電子 光システム工学科

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

ohpr.dvi

i

TOP URL 1

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

吸収分光.PDF

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

master.dvi

2_R_新技術説明会(佐々木)

QMII_10.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


19 /

Microsoft Word - 11問題表紙(選択).docx

genron-3

物性物理学I_2.pptx


,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

December 28, 2018

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

arxiv: v1(astro-ph.co)

all.dvi

物理化学I-第12回(13).ppt

Z: Q: R: C:


τ τ

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

Transcription:

I ino@hiroshima-u.ac.jp 217 11 14

4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39

2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4

Pauli Sommerfeld 4.2 Ĥ Ĥ = ˆp2 2m = ħ2 ˆk2 2m ( ) ˆp = ħ ˆk ˆk = i = i x, y, z ħ 2 ˆk2 2m ψ(r) = E ψ(r) (4.1) k A ψ k (r) def. = A e ik r = A e ik xx e ik yy e ik zz (4.2) ˆk ψ k (r) = k ψ k (r) ˆk (4.1) E = ħ2 k 2 2m (4.3) E = p2 2m ψ k (r) 4.1 ψ k (r) 2 = A 2 41

y 2 k 2 k x Im Re 4.1 ψ k (r) ( ) ( ) L ψ(x+l, y, z) = ψ(x, y, z) ψ(x, y+l, z) = ψ(x, y, z) (4.4) ψ(x, y, z+l) = ψ(x, y, z) L (4.2) (4.4) e ikxl = 1 e ikyl = 1 e ikzl = 1 k k = 2π ( ) nx, n y, n z n x n y n z (4.5) L n x n y n z L dx L dy L dz ψ(r) ψ(r) = 1 (4.2) A = 1 L 3 ψ(r) = 1 L 3 ei k r (4.6) 42

* 1 (4.5) 4.2 2π L ( ) 2π 3 1 s = +1/2 L s = 1/2 ( ) 2π 3 dk x dk y dk z dn = 2 dk x dk y dk z L V = L 3 dn = 2 V (2π) dk xdk 3 y dk z (4.7) (4.3) E 2mE N(E) (4.3) k = ħ 2mE N(E) (4.7) k < ħ N(E) = 2V dk (2π) 3 x dk y dk z k < 2mE ħ = 2V (2π) 4π ( )3 2mE 3 3 ħ = V ( )3 2m E 3/2 3π 2 ħ (4.8) E E + de dn = d N(E) de de D(E) def. = d N(E) (4.9) de * 1 43

と定義する これに (4.8) 式を代入すると 自由電子気体の状態密度 が得られる V D(E) = 2π2 ( )3 2m E ℏ (4.1) 従って 三次元では D(E) E となる (4.8) 式では 球の体積を用いて状態を数えた が 代わりに円の面積を用いると二次元自由電子気体の状態密度が 線分の長さを用いる と一次元自由電子気体の状態密度が得られる フェルミ準位とフェルミ波数 温度ゼロ T = では 電子は パウリの排他律が許す限りエネルギーの低い状態を占め る 従って 電子の数が増えるにつれて エネルギーの低い状態から順に埋まっていく 温度ゼロにおいて 占有状態と非占有状態を分けるエネルギーを フェルミ準位 (Fermi leel) EF と呼ぶ*2 また エネルギーが EF に等しい状態の波数を フェルミ波数 (Fermi waenumber) kf と定義する 三次元波数空間において フェルミ波数を集めると曲面 になるので これを フェルミ面 (Fermi surface) と呼ぶ 図 4.3 フェルミ球 図 4.2 量子状態の分布 *2 EF は フェルミ エネルギー と呼ばれることもある 44

(4.3) 4.3 k F (Fermi sphere) k < k F k > k F (4.7) N 2V (2π) 3 4π 3 k3 F = N n = N V k F = ( 3π 2 n ) 1/3 (4.11) ψ(r) e i k F r λ F def. = 2π k F (4.12) F ħk F F = ħ k F m (4.13) (4.3) E F E F = ħ2 k 2 F 2m T F (4.14) T F def. = E F k B (4.15) (4.1) E = E F (4.14) D(E F ) = V ( )3 2m EF = V ( ) 3 2m ħ k F 2π 2 ħ 2π 2 ħ 3 2m D(E F ) = mv π 2 ħ 2 k F (4.16) 45

, D(E) D(E F ) 4.4 E F, E (4.11) (4.16) k F = 2π λ F = m ħ F = 2m EF ħ = 2mkB T F ħ = π2 ħ 2 m D(E F ) V = ( 3π 3 n ) 1/3 (4.17) n 2.1 n (4.11) (4.16) 4.1 4.1 Z n k F λ F F E F T F D(E F )/V (/nm 3 ) (/Å) (Å) (km/s) (ev) (1 3 K) (/nm 3 ev) 29Cu 1 84.7 1.36 4.62 1573 7.3 81.6 18.1 47Ag 1 58.6 1.2 5.23 1391 5.5 63.8 16. 79Au 1 59. 1.2 5.22 1394 5.53 64.1 16. 13Al 3 181 1.75 3.59 225 11.7 135 23.3 λ F T F F.5% T (2.17) 2 117 3 F km/s 46

4.3 1926 (Enrico Fermi) (Paul Adrien Maurice Dirac) T µ E (Fermi-Dirac distribution) f FD (E) = 1 e (E µ)/k BT + 1 (4.18) * 3 (4.18) +1 (3.4) f MB (E) (3.8) f BE (E) 1927 (Arnold Johannes Wilhelm Sommerfeld) 1..5 4k B T 1..5 µ = 1 K 3 K 1 K 5 K 1 K K 4.5 µ 2k B T µ µ+2k B T, E 4.6 -.2 -.1.1.2, E (ev) * 3 Ξ i = 1 + e β(ε i µ) ni = 1 β µ ln Ξ 1 i = e β(εi µ) + 1 47

4.5 E E f FD (E) 1 1 E + f FD (E) 1 E µ E = µ d f FD (E) de = E=µ e (E µ)/k BT k B T [ e (E µ)/kbt + 1 ] 2 = 1 4 k B T E=µ 4.5 E = 4k B T T 4.6 (4.1) (4.18) E ( f FD (E) D(E) f 1 e β(e µ) FD 2m + 1 p2) 1 1 e β( 1 2m µ) p2 + 1 f MB (E) D(E) E e βe f MB ( 1 2m p2) 1 e 1 2m βp2 T =.2 T F 4.7 E F 16 K * 4 E 1.5 k B T E F * 4 1358 K k B T =.2 E F 48

Fermi sphere p y ~k F p x E E E F 4k B T Fermi-Dirac E F.6E F 1.5k B T p x p y Maxwell-Boltzman p x 4.7 k B T/E F =.2 49

T T µ E F 3 5 E F * 5, E 4.8 E F 1 2 D(E F) 2k B T 4 3 k BT U(T) U() [ 1 2 2k BT 1 ] 2 D(E F) 4 3 k BT = 2 3 k2 B T2 D(E F ) C el def. = du dt 4k2 B 3 D(E F) T 2k B T E F 4.8 C MB = 3 2 Nk B T D(E F ) 4.8 * 5 µ(t) = E F π2 6 k2 B T2 D (E F ) D(E F ) E F lim µ(t) = E F T T T F µ µ E F 5

E U U(T) = E D(E) f FD (E) de E F N = E F D(E) f FD (E) de U(T) E F N = (E E F ) D(E) f FD (E) de T C el C el def. = du dt = (E E F ) D(E) d f FD dt de d f FD dt E F D(E) D(E F ) C el = D(E F ) (E E F ) d f FD dt de x = β(e E F ) dx dt = d dt C el = D(E F ) βe F ( x dx β dt ) d f FD dx dx β ( ) E EF = x k B T T βe F = E F k B T C el = D(E F) x 2 d f FD dx (4.19) β 2 T dx µ(t) E F 1 f FD (x) = e x + 1 d f FD dx = d ( ) 1 dx e x + 1 x 2 d f FD dx dx = 2 x 2 d f FD dx x dx = 2 2x f FD dx = 4 e x dx = π2 + 1 3 51

* 6 x e x + 1 (4.19) dx = π2 12 C el = γt C el = π2 k 2 B 3 D(E F) T (4.2) γ = π2 k 2 B 3 D(E F) (4.21) D(E F ) γ D(E F ) (4.2) C MB = 3 2 Nk B C el C MB D(E) E D(E F ) E F N = π 2 k 2 B 3 D(E F) T 3 2 N k B = D(E F) E F EF D(E) de = = 2π2 9 D(E F) E F N EF E F = E de EF T T F E 3/2 F [ 2 3 E3/2 ] EF = 3 2 (4.22) C el C MB = π2 3 ( T TF ) 3.3 T T F (4.23) * 6 x e x +1 dx = ( 1) n x e (n+1)x ( 1) n dx = e (n+1)x dx = n+1 n= ζ(2) 2 n= = π2 12 n=1 x e x dx = 1 + e x ( 1) n (n+1) 2 = 1 n 2 2 x e x n= n=1 n=1 1 n 2 52 ( e x ) n dx = n= 1 (2n) 2 = 1 2 n=1 1 n 2 =

T F 1/1 3.3 T/T F (4.17) n (3.21) C ph T 3 C el T T 4.9 Cu T < 5 K C/T T 2 C(T) T = γ + AT2 C/T T 2 γ exp =.688 mj/mol K 2 4.1 D(E F )/V (4.21) γ th =.53 mj/mol K 2 C el T C ph T 3 25 C/T (mj/mol K 2 ) Cu T 2 (K 2 ) 4.9 Cu [1] γ, c (J/mol K) 2 15 1 5 1 Cu 2 3 4, T (K) 4.1 Cu [2] (T < 5 K) C el =.688 T mj/mol K 2.48 T 3 mj/mol K 2 53

4.2 γ exp [3] (4.16) γ th γ exp γ th Z (mj/mol K 2 ) (mj/mol K 2 ) γ exp /γ th Li 1 1.65.75 2.2 Na 1 1.38 1.12 1.2 K 1 2.8 1.73 1.2 Rb 1 2.63 1.99 1.3 Cu 1.69.5 1.4 Ag 1.64.64 1. Au 1.69.64 1.1 Be 2.171.49.35 Mg 2 1.26.99 1.3 Ca 2 2.73 1.5 1.8 Zn 2.64.75.85 Cd 2.69.95.73 Al 3 1.35.91 1.5 In 3 1.66 1.23 1.3 Tl 3 1.47 1.31 1.1 C a 4.49 Si 4 1.14 Sn 4 1.78 1.38 1.3 Pb 4 2.99 1.5 2. As 5.191 1.29.15 Sb 5.119 1.61.7 Bi 5.85 1.79.5 a 54

4.1 (4.21) (4.2) D(E) (4.1) (4.3) γ D(E F ) D(E F ) γ exp γ th 4.2 C Si γ exp As Sb Bi γ exp 4.11 γ = π2 k 2 B D(E F ) 3 V D(E F )/V * 7 4.4 1933 * 7 D(E F )/V d f d f m m = γ exp γ th 55

2.6 4.12 E ee d p(t) dt = ee 4.12 τ eeτ d = e τ m E (2.9) p( ) τ 1.5 1..5 4.11 C 1 V 2 Mn Ni Cu Pd Ag 3 4 5 6 7 8 Pt Au Pb γ (J/cm 3 K 2 ) 56

E p y p p x p E E F p ~k F p x 1 p p x p p p x 4.12 57

d F (2.7) d τ d j (2.11) σ = e 2 n τ m τ F (2.12) 2 (2.13) κ = c 2 3 nτ (2.13) c C el /N F ( ) 2 (4.2) 2 F = ħkf = 2E F m m (4.22) 2D(E F) E F 3N κ = Cel 2 F 3N nτ κ = 1 3N π2 k 2 B 3 D(E F) T 2E F m nτ = 1 κ = π2 k 2 B T 3 nτ m (4.24) (2.15) 58

(2.12) σ = e 2 nτ m nτ m κ σt = 1 ( ) 2 πkb 2.44 1 8 WΩ/K 2 3 e 1.11 2 2.3 2.3 2.9 ρ τ l = τ 2 T (2.17) 2 = 117 km/s 3 F l = F τ (4.25) 4.1 F (4.25) 2.12 τ l 4.13 F l(t) τ(t) l(t) τ(t) σ(t) 1 l(t) 1 τ(t) ρ(t) l(t) 4.13 T 1 K l l 59

, 1 6 1 5 1 4 Ag Cu Au 1 3 Al 1 2 1 1 1 1, T (K) 4.13 l l 2.12 4.13 l 1 1 K l 5 l Å Å Å Å Å 6

4.5 T T F 3 n C el = π2 k 2 B 3 D(E F) T σ = e 2 nτ τ m T 2 = 117 km/s Cu = 157 km/s 3 F κ = π2 k 2 B T nτ 3 m l = F τ ( ) Å Å Å [1] W. S. Corak, M. P. Garfunkel, C. B. Satterthwaite, and A. Wexler, Atomic Heats of Copper, Siler, and Gold from 1 K to 5 K, Phys. Re. 98, 1699 (1955). [2] G. K. White and S. J. Collocott, Heat Capacity of Reference Materials: Cu and W, J. Phys. Chem. Ref. Data 13, 1251 (1984). [3] G. R. Stewart, Measurement of low-temperature specific heat, Re. Sci. Instrum. 54, 1 (1983). 61