1 (Contents) (4) Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem

Similar documents
1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

本文/目次(裏白)


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


phs.dvi

QMI13a.dvi

30

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1


6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

DVIOUT-fujin

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

量子力学 問題

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ


SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

all.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


meiji_resume_1.PDF

³ÎΨÏÀ

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Part () () Γ Part ,

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m


newmain.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

December 28, 2018

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x



( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

液晶の物理1:連続体理論(弾性,粘性)

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

振動と波動


ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)


(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

TOP URL 1

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

第86回日本感染症学会総会学術集会後抄録(I)

量子力学3-2013

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

( ) ) AGD 2) 7) 1

eto-vol1.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


プログラム

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Z: Q: R: C: 3. Green Cauchy

Note.tex 2008/09/19( )

( )

Mathematical Logic I 12 Contents I Zorn

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

数学の基礎訓練I

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I

A

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

SO(2)

i

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Transcription:

7 1 2017 3 2017 3 18

1 (Contents) 1. 2 2. (4) 13 3. 1 20 4. 25 5. 28 6. 29 1. Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem in Quantum Mechanics (4) Kenji SETO 13 3. Anti-commutativity among Linearly Independent Imaginary Units Katsusada MORITA 20 4. The Parity Operator Minoru YONEZAWA 25 5. The Parity Operator A Comment Noboru NAKANISHI 28 6. Editorial Comments Shozo NIIZEKI, Tadashi YANO 29

Why Has the Superstring Theory Collapsed? * 1 Noboru NAKANISHI * 2 1 30 *3 30 *4 72, 345 (1986), ( 1986 9, 48, 44 (1993). superalgebra graded algebra indecomposable extension SUSY 1 x µ ( ) 1 ( ) *5 SUSY *1 *2 nbr-nak@trio.plala.or.jp *3 *4 3 http://www.math.columbia.edu/ woit/wordpress P. Woit Some Early Criticism of String Theory, October 30, 2006 *5 3 2

SUSY 2 SUSY 2 2 SU(3) SU(2) U(1) *6 S SUSY SUSY SUSY S 2 SUSY SUSY SUSY *7 SUSY SUSY SUSY 1/2 SUSY *6 *7 SUSY SUSY SUSY 3

S (NG) SUSY 1/2 NG SUSY NG NG SUSY SUSY (SUGRA) NG SUSY S SUSY SUSY SUSY 1 SUSY 2 1 SUSY CERN LHC SUSY is dead SUSY SUSY 4

1/2 *8 BRS *9 x µ x µ NG 2 SU(2) U(1) SU(2) U(1) U(1) U(1) 20 SUSY SUSY SUSY ( *8 *9 FP BRS 5

x µ SUSY x µ SUSY SUSY SUSY 3 S 1 2 S S s t 2 2 s s S * 10 l * 11 l s l = α(s) α(s) * 12 α(s) = α 0 + α s *10 *11 *12 6

α s 1 t t t α(s) (s 0) log t 1 α 0 1 α 0 = 1 1 s < 0 s * 13 N 2 2 N 4 N = 4 B( α(s), α(t)) = Γ( α(s))γ( α(t)) Γ( α(s) α(t)) = 1 0 dx x α(s) 1 (1 x) α(t) 1 * 14 N N 3 * 15 3 SU(3) *13 *14 N = 4 3 3 *15 N 3 7

2 2 D 2 * 16 D 2 * 17 2 * 18 D = 26 4 26 D * 19 4 SUSY 2 α 0 = 2 2 c h 1/2π ħ 1 20 *16 *17 S *18 *19 D = 26 8

α 2 s [l = ] 1 α 0 26 10 4 6 5 6 2 * 20 1 1/2 * 21 4 4n + 2 (n = 0, 1, 2, ) n = 2 10 496 SO(32) E 8 E 8 SU(3) SU(2) U(1) SU(5) SO(10) * 22 *20 0 0 *21 2 *22 9

1985 1990 1995 p + 1 Dp 11 M 10 4 10 6 6 6 4 6 6 4 6 10 * 23 4 *23 6-1 (2010) 10

* 24 2 1 2 * 25 * 26 6 a s (a = (1/x) α > 1) s = p µ p µ = p 2 0 p 2 p µ p 0 p 2 0 *24 D 3 *25 2 15-3 (2012) *26 L. Smolin The Troubles with Physics (2006) p.279-p.282 S. Mandelstam Mandelstam 1 11

2 T T T T T* T T* T T* * 27 2 2 T T* 2 * 28 5 The only game in town * 29 The only Game in Town K. Vonnegut * 30 A guy with the gambling sickness loses his shirt every night in a poker game. Somebody tells him that the game is crooked, rigged to send him to the poorhouse. And he says, haggardly, I know, I know. But it s the only game in town. *27 Φ = 0 Φ 1 T Φ T* T* *28 M. Abe and N. Nakanishi, Prog. Theor. Phys. 115, 1151 (2006) 113, 76 (2006) *29 Not Even Wrong (2006) P. Woit *30 B. Schroer, String theory and the crisis in particle physics, special volume of I. J. M. P. D (2006) 12

(4) A Periodic Potential Problem in Quantum Mechanics (4) Kenji Seto 1 Kronig- Penney 1 3 4 2 1 Schrödinger [ ħ2 d 2 ] 2m dx 2 + V (x) Ψ = EΨ (1.1) V (x) 2l V (x + 2l) = V (x) l x < l V (x) = V 0 ( x l ) 2 (1.2) V 0 x, V 0, E x l x, 2ml 2 ħ 2 V 0 V 0, 2ml 2 ħ 2 E E (1.3) [ d 2 ] dx 2 + E V (x) Ψ = 0 (1.4) V (x) 2 V (x + 2) = V (x) 1 x < 1 V (x) = V 0 x 2 (1.5) 2 µ µ = (4V 0 ) 1/4 (2.1) E-mail: seto@pony.ocn.ne.jp 13

x z E κ z = µx, κ = E µ 2 1 2 (2.2) 1 x < 1 [ d 2 dz 2 + κ + 1 2 z2 4 ] Ψ = 0 (2.3) Weber (Weber ) D κ (z) 1 F 1 D κ (z) = 2 κ/2 [ π e z2 /4 1 ( Γ ((1 κ)/2) 1 F 1 κ 2, 1 2 ; z 2 ) 2 2 z ( 1 κ Γ ( κ/2) 1 F 1, 2 3 2 ; z 2 )] 2 (2.4) *1 Weber Hermite H n (z) κ n D n (z) = e z2 /4 H n (z) Hermite Weber 1 D κ 1 (iz) = 2 (κ+1)/2 [ π e z2 /4 1 ( κ + 1 Γ ((κ + 2)/2) 1 F 1, 2 1 ) 2 ; z2 2 2 iz ( κ + 2 3 )] Γ ((κ + 1)/2) 1 F 1, 2 2 ; z2 2 (2.5) Floquet (2.3) ( S 1 (z) =e z2 /4 κ + 1 1 F 1, 2 ( S 2 (z) =ze z2 /4 κ + 2 1 F 1, 2 1 ) 2 ; z2 2 3 2 ; z2 2 (2.3) 2 *2 S 1 (z) S 2 (z) S 1, S 2 Wronskian ) (2.6) W (z) = S 1 (z)s 2(z) S 1(z)S 2 (z) (2.7) z S 1, S 2 (2.3) Wronskian z = 0 W (z) 1 (2.8) (1.4) 1 x < 1 A, B Ψ(x) = AS 1 (µx) + BS 2 (µx) (2.9) *1 3 ( ) p.75-78 λ κ *2 Kummer ( p.67) 1 F 1 (α, γ; z) = e z 1F 1 (γ α, γ; z) S 1, S 2 (2.4) 1 2 14

Floquet 1 K (0 K π) e ik e ik 1 x < 3 Ψ(x) = e ik[ ( ) ( )] AS 1 µ(x 2) + BS2 µ(x 2), or Ψ(x) = e ik [ ( ) ( )] AS 1 µ(x 2) + BS2 µ(x 2) (2.10) K 2 1 K = 0, π 2 K 1 K 0 < K < π (2.9) (2.10) x = 1 AS 1 (µ) + BS 2 (µ) = e ik[ AS 1 (µ) BS 2 (µ) ] AS 1(µ) + BS 2(µ) = e ik[ AS 1(µ) + BS 2(µ) ] (2.11) S 1, S 2 S 1, S 2 ( ) ( ) ( ) (1 e ik )S 1 (µ) (1 + e ik )S 2 (µ) A 0 (1 + e ik )S 1(µ) (1 e ik )S 2(µ) = B 0 (2.12) A, B cos(k) = S 1 (µ)s 2(µ) + S 1(µ)S 2 (µ) (2.13) (2.8) Wronskian 1 K 1 S 1, S 2 κ, E A, B (2.11) 1 A = (1 + e ik )S 2 (µ), B = (1 e ik )S 1 (µ) (2.14) x n 2n 1 x < 2n + 1 Ψ(x) = e ikn[ (1 + e ik ( ) )S 2 (µ)s 1 µ(x 2n) (1 e ik ( )] )S 1 (µ)s 2 µ(x 2n) (2.15) 3 2 E, E κ, K κ, κ, K, K S 1, S 2 Ψ(x, E), S i (z, κ), i = 1, 2 15

(2.15) Ψ(x, E)Ψ(x, E )dx = n= 2n+1 2n 1 ( Ψ(x, E)Ψ(x, E )dx = n= lim M M n= M ) 1 e i(k K )n Ψ(x, E)Ψ(x, E )dx 1 (3.1) e i(k K )n = 2πδ(K K ), 0 < K, K < π (3.2) E, E (1.4) [ d 2 ] dx 2 + E V (x) Ψ(x, E) = 0, [ d 2 ] dx 2 + E V (x) Ψ(x, E ) = 0 (3.3) E 1 Ψ(x, E ) 2 Ψ(x, E) d [ Ψ(x, E) dψ(x, E ) dx dx 1 1 1 1 Ψ(x, E)Ψ(x, E )dx = dψ(x, E) ] Ψ(x, E ) (E E )Ψ(x, E)Ψ(x, E ) = 0 (3.4) dx 1 [ E E Ψ(x, E) dψ(x, E ) dx dψ(x, E) ] 1 Ψ(x, E ) dx 1 n = 0 (2.15) 16 S 1, S 2 Wronskian (2.8) (2.13) 1 1 Ψ(x, E)Ψ(x, E )dx = 2µ E E [ S 1 (µ, κ)s 2 (µ, κ) [ (1 + e i(k K ) ) cos(k ) (e ik + e ik ) ] (3.5) S 1 (µ, κ )S 2 (µ, κ ) [ (1 + e i(k K ) ) cos(k) (e ik + e ik ) ]] (3.6) (3.2) (3.6) (3.1) E, E (2.2) κ, κ Ψ(x, E)Ψ(x, E )dx = 4π [S µ(κ κ 1 (µ, κ)s 2 (µ, κ) [ (1 + e i(k K ) ) cos(k ) (e ik + e ik ) ] ) S 1 (µ, κ )S 2 (µ, κ ) [ (1 + e i(k K ) ) cos(k) (e ik + e ik ) ]] δ(k K ) (3.7) 1 κ (2.13) K K κ κ κ κ K = K κ κ κ κ 0/0 l Hôpital κ κ κ Ψ(x, E)Ψ(x, E )dx = 8π µ S 1(µ, κ)s 2 (µ, κ) sin(k) dk dκ δ(k K ) (3.8) 16

0 < K < π sin(k) S 1 (µ, κ)s 2 (µ, κ) dk/dκ E Ψ(x, E)Ψ(x, E )dx = N 2 (E)δ(E E ), N 2 (E) = 8πµ S 1 (µ, κ)s 2 (µ, κ) sin(k) (3.9) N(E) Ψ(x, E)/N(E) K (2.10) 2 sin(k), dk/dκ 4 (2.6) S 1 (z, κ), S 2 (z, κ) κ S 1 (z, 0) = e z2 /4, S 2 (z, 1) = ze z2 /4 (4.1) κ 1-1, 1-2 z κ S 1 ( 1-1) S 2 ( 1-2) 0 z 5, 0 κ 10 S 1 κ 1.6 z S 2 0 κ < 1 z κ 1 2 z S 1, S 2 κ 4 z S 2 1-1 S 1 (z, κ) 1-2 S 2 (z, κ) 17

(2.13) V 0 E K V 0 = 50 2 K (3.8) S 1 (µ, κ)s 2 (µ, κ) S 1 (µ, κ)s 2 (µ, κ) dk/de = dk/µ 2 dκ 2 K E (V 0 = 50) 3 V 0 V 0 - E (2.13) 1 1 1 1 3 V 0 - E 5 4 (2.6) S 1 (z), S 2 (z) 50 18

100 z 5.5 z z z z 5.5 V 0 (2.1) µ (2.2) z, κ V 0 < 0 [ ] 19

1 1) Anti-commutativity among Linearly Independent Imaginary Units Katsusada Morita 2) n a 1 a n a 2 n a 2 = a 2 z z 2 = z 2 1 x, y x, y xy = x y 2 z = x + iy z 2 = x 2 + y 2 3) z 1 z 2 = z 1 z 2 3 [1] a = a 0 + ia 1 + ja 2, b = b 0 + ib 1 + jb 2 {1, i, j} 1 4) ( ) ab : ab = (ab) 0 + i(ab) 1 + j(ab) 2 + ija 1 b 2 + jia 2 b 1 (ab) 0 = a 0 b 0 a 1 b 1 a 2 b 2 (ab) 1 = a 0 b 1 + a 1 b 0 (ab) 2 = a 0 b 2 + a 2 b 0 (1.1) i 2 = j 2 = 1 ij + ji = 0 (1.2) 5) (1.1) ij(a 1 b 2 a 2 b 1 ) ij(ab) 3 ab 2 = (ab) 2 0 + (ab) 2 1 + (ab) 2 2 + (ab) 2 3 = a 2 b 2 a 2 z 2 = x 2 + y 2 a 2 = a 2 0 + a 2 1 + a 2 2 ab 2 4 ( {1, i, j, ij} ) ij {1, i, j} ij = α + βi + γj, 1) 2) kmorita@cello.ocn.ne.jp 3) z = 0 z 2 = 0 z = 0 x = y = 0. {1, i} a = a 0 + ia 1 + ja 2 = 0 a 2 = a 2 0 + a2 1 + a2 2 = 0 a = 0 a 0 = a 1 = a 2 = 0 {1, i, j} 1 4) 1 Hamilton Dickson [2] 1 {i, j, k} Frobenius 5) ij = ji 0 = i 2 j 2 = (i j)(i+j) j = ±i a a = a 0 +i(a 1 ±a 2 ) ij ji ij = αji, α( +1) R (ij) 2 = (ji) 2 = α α 2 = 1 α 1 α = 1 (1.2) Hamilton [3] 20

α, β, γ (ij) 2 = 1 6) i(ij) = (ij)i, j(ij) = (ij)j ij {i, j} {i, j, ij} 1 7) ab 2 ab {1, i, j, ij} 3 a 2 b 2 ab 2 = a 2 b 2 Hurwitz a = b (1.2) (a 2 ) 3 = 0 a 2 2 = a 4 {i, j} (1.2) 3 3 2 (1.2) {1, i, j} 1 a a 2 2 = a 4 {1, i, j} 1 2 (1.2) {1, i, j} 1 3 n (n 1) 1 n a a 2 = a 2 4 Hamilton [1] 2 1 Hamilton a [1] a = a 0 + ia 1 + ja 2, i 2 = j 2 = 1, a 0, a 1, a 2 R (2.1) b = b 0 + ib 1 + jb 2, b 0, b 1, b 2 R (1.1) ij ji 2 ( ) z 1 z 2 = z 1 z 2 a = b a µ = b µ (µ = 0, 1, 2) a 2 a 2 = a 2 0 a 2 1 a 2 2 + 2ia 0 a 1 + 2ja 0 a 2 + (ij + ji)a 1 a 2 (2.2) (1.2) a 2 a 2 2 = a 4 : a 2 2 = (a 2 0 a 2 1 a 2 2) 2 + (2a 0 a 1 ) 2 + (2a 0 a 2 ) 2 = (a 2 0 + a 2 1 + a 2 2) 2 = a 4 (2.3) (2.3) {i, j} (1.2) Hamilton [1] Hamilton ) Hamilton [1] [3] a = a 0 + ia 1 + ja 2 a = (a 0, a 1, a 2 ) 1 = (1, 0, 0), i = (0, 1, 0), j = (0, 0, 1) {1, i, j} α 0 + iα 1 + jα 2 = 0, α 0, α 1, α 2 R (2.4) 6) Hamilton k = ij, k 2 = 1 7) 1 2 21

α 0 = α 1 = α 2 = 0 {i, j} 1 iα 1 + jα 2 = 0, α 1, α 2 R (2.5) α 1 = α 2 = 0 (2.5) 2 (α 2 1 + α 2 2) + (ij + ji)α 1 α 2 = 0, ij + ji R (2.6) {i, j} (1.2) α 1 = α 2 = 0 {i, j} 1 {1, i, j} 1 (i ± j) 2 < 0 (i ± j) 2 0 2 w = 1 w = i ± j {1, i, j} 1 (i ± j) 2 < 0 ij + ji = 2α R, α < 1 8) α 0 [2] {i, j} α < 1 a, b I = i, J = ai + bj, a = ±α/ 1 α 2, b = ±1/ 1 α 2 (2.7) I 2 = J 2 = 1, IJ + JI = 0 (2.8) I = i, J = j ( (2.1) a 1,2 ) (1.2) 1 {i, j} 3 (n 1) 1 [4] a, b {1, e i } i=1,2,3 l a = a 0 e 0 + a i e i + a 4 l a 0, a i, a 4 R b = b 0 e 0 + b i e i + b 4 l b 0, b i, b 4 R e 2 0 = e 0, l 2 = 1, le i = e i l (i = 1, 2, 3) ab = (ab) 0 e 0 + (ab) i e i + (ab) (4i) e i l + (ab) 4 l (i, j, k = 1, 2, 3 l [4] {e i, le i, l} {e A } A=1,2,3,,7 ): (ab) 0 = a 0 b 0 a i b i a 4 b 4 (ab) i = (a 0 b i + a i b 0 ) + ϵ jki a j b k (ab) 4i = a i b 4 a 4 b i (ab) 4 = a 0 b 4 + a 4 b 0 (2.9) (2.10) ab 2 = (ab) 2 0 + (ab) 2 i + (ab)2 4 + (ab) 2 4i ab 2 = a 2 b 2 a = b (a 2 ) 4i = 0 a 2 a 2 2 = a 4 8) ij + ji = 2β R, β < 1 (2.6) α 1,2 α 1 = α 2 = 0 22

3 n a = a 0 + a 1 e 1 + a 2 e 2 + + a n 1 e n 1, a µ (µ = 0, 1,, n 1) R (3.1) 1 {e i } i=1,2,,n 1 e i e j + e j e i = 2δ ij (3.2) e i e j = δ ij + c ijk e k, c jik = c ijk {e i } {E k } e i e j = δ ij + c ijk E k, c jik = c ijk, E k E k = δ kk a 9) 1 1 e 1 = (0, 1, 0, 0,, 0, 0) e 2 = (0, 0, 1, 0,, 0, 0). e n 1 = (0, 0, 0, 0,, 0, 1) (3.3) α 1 e 1 + α 2 e 2 + + α n 1 e n 1 = (0, α 1, α 2,, α n 1 ) = (0, 0, 0,, 0) α 1 = α 2 = = α n 1 = 0 e i e 2 1 = e 2 2 = = e 2 n 1 = ( 1, 0,, 0) e 0 ( ) (α 1 e 1 + α 2 e 2 + + α n 1 e n 1 ) 2 = i i j αi 2 + 1 α i α j (e i e j + e j e i ) = 0 2 i j e i e j + e j e i = 0 (i j ) (3.4) i α i = 0 {e i } i=1,2,,n 1 1 10) 1 (3.4) 11) i, j(i j) {1, e i, e j } 1 (e i ± e j ) 2 < 0 e i e j + e j e i = 2α ij, α ij < 1 {e i, e j } {I i, I j } {I i, I j } (2.7), (2.8) {I i, I j } = {e i, e j } (3.4) {e i } i=1,2,,n 1 1 (3.4) (3.4) ( Einstein ) a 2 2 = (a 0 + a 1 e 1 + a 2 e 2 + + a n 1 e n 1 ) 2 2 = (a 0 + a i e i ) 2 2 = a 2 0 + 2a 0 a i e i + a i a j e i e j 2 = a 2 0 + 2a 0 a i e i + a i a j (e i e j + e j e i )/2 2 = (a 2 0 a 2 i ) 2 + (2a 0 a i ) 2 = (a 2 0 + a 2 i ) 2 = a 4 (3.5) 9) e 1 = i, e 2 = j E 3 = e 1 e 2, E3 2 = 1 10) j 1 e 1 e j = e j e 1 n a = a 0 + a i e i a = a 0 ± i(a 1 + + a n), i e 1 11) [4] A 23

a 2 = a 2 (3.6) (2.3) n 1 a = (a 0, a 1,, a n 1 ) 2 a 2 ab = a b a = b (3.6) (3.6) (3.6) n a 2 a 2 n (3.6) (3.4) a {1, e 1,, e n 1 } 1 ( ) 4 Hamilton [1] 1 1 1 ( {i, j}(i 2 = j 2 = 1) ) {1, i, j} 3 {1, i, j} 1 Hamilton a a 2 = a 2 {i, j} a a aa Hamilton Dickson [2] a 1 a 2 = a 2 n a 2 a 2 n n a {e 0, e 1,, e n 1 } 1 Cayley-Dickson a 2 = a 2 ab = a b R, C, H, O Hurwitz, ( ) [1] W. R. Hamilton, Quaternions, Proc. Roy. Irish Acad. vol. L(1945), 89-92. [2] L. E. Dickson, Linear Algebras, Cambridge: at the University Press, 1914. [3] ( 2014). [4] K. Morita, Quasi-Associativity and Cayley-Dickson Algebras, PTEP, 2014, 013A03 (19 pages). 24

1 The Parity Operator Minoru Yonezawa 2 1 (Parity operator) P 3 2 [ ] [ 1 n P = ( 2x)n n! x n n=0 m=0 ] [ 1 m ( 2y)m m! y m l=0 ] 1 l ( 2z)l l! z l (2.1) 3 1 (Taylor expansion) f(x + a) = n=0 ( f( x) = exp a d ) f(x) dx = a= 2x ( 1 dn an f(x) = exp a d ) f(x) (2.2) n! dxn dx n=0 1 n! dn ( 2x)n f(x) (2.3) dxn (2.3) (2.3) a f(x) x a = 2x 4 P f(x) = f( x), 1 dn P = ( 2x)n n! dx n (2.4) n=0 1 2 m-yonezawa@mtc.biglobe.ne.jp 3 1 4 1 25

3 p x = iħ d dx x x + a (unitary operator) U = e i a ħ p x f(x + a) = Uf(x) (2.5) 3 x x 1 3 2 pp. 14-18 (translation operator) 2 1 (2.2) a = 2x n 2 f( x) = n=0 ( 1 dn ( 2x)n f(x) = exp 2x d ) f(x) (3.1) n! dxn dx ( exp 2x d ) = dx (3.1) n=0 ( 1 2x d ) n (3.2) n! dx ( ( 2x) n dn dx n 2x d ) n (3.3) dx (2.2) (2.2) a = 2x f(x + a) = f( x) a = a = 2x 26

(2.3) 1 (2.3) 2 Taylor Taylor f(x+h) x+h x f(x) f (n) (x), (n = 1, 2, 3, ) f(x + h) h f(x + h) = a 0 + a 1 h + a 2 h 2 + a 3 h 3 + a 4 h 4 + + a n h n + (3.4) h a 0, a 1, a 2, a 3, a 4, (3.4) h = 0 a 0 = f(x) (3.4) h f (x + h) = a 1 + 2a 2 h + 3a 3 h 2 + 4a 4 h 3 + + na n h n 1 + (3.5) (3.5) h = 0 a 1 = f (x) (3.5) h f (x + h) = 2a 2 + 2 3a 3 h + 3 4a 4 h 2 + + (n 1)na n h n 2 + (3.6) (3.6) h = 0 a 2 = 1 2! f (x) (3.6) h f (x + h) = 1 2 3a 3 + 2 3 4a 4 h + + (n 2)(n 1)na n h n 3 + (3.7) (3.7) h = 0 a 3 = 1 3! f (x) a n = 1 n! f (n) (x) (3.4) f(x + h) = f(x) + hf (x) + h2 2! f (x) + h3 3! f (x) + + hn n! f n (x) + (3.8) (2017. 2. 8) 27

The Parity Operator A Comment 1 Noboru NAKANISHI 2 P P f(x) = d dx P a x dyf(y) (1) dyk(x, y)f(y) (2) K(x, y) = δ(x + y) (3) (2017.3.16) 1 2 nbr-nak@trio.plala.or.jp 28

7 1 5 0 7 2 29