untitled

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

mf.dvi

16 7 5

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,


201711grade1ouyou.pdf

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

TOP URL 1


i 18 2H 2 + O 2 2H 2 + ( ) 3K

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

Microsoft Word - 11問題表紙(選択).docx

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) Loewner SLE 13 February

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

untitled

Untitled

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

曲面のパラメタ表示と接線ベクトル

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

KENZOU

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

³ÎΨÏÀ


II 2 II

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

meiji_resume_1.PDF


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

II Brown Brown

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

The Physics of Atmospheres CAPTER :

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

untitled

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

chap9.dvi

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


Z: Q: R: C: sin 6 5 ζ a, b

Part () () Γ Part ,

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Z: Q: R: C: 3. Green Cauchy

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

Grushin 2MA16039T

Black-Scholes 1 ( )

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

( ) ,

30


pdf

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


Z: Q: R: C:

gr09.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

I ( ) 2019


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

untitled

DE-resume

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

Note.tex 2008/09/19( )

2011de.dvi

量子力学 問題

30 (11/04 )


2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

b3e2003.dvi

1 c Koichi Suga, ISBN

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

Transcription:

1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................ 8 3.2 BS..................... 8 3.3...................... 9 4 Black Scholes 1 4.1 Brown.............. 1 4.2 Self financing strategy.............................. 14 4.3 Black Sholes BS........... 14 5 BS 16 6 Black Scholes 16 1 1.1

11 1 2 (i) hedge (ii) 1 1 11 1 1 J.Hull short selling, short position, short S T 1 T 1+R F =(1+R)S $T$ $R$ F>(1 + R)S position S

3 +S F (1 + R)S F > (1 + R)S arbitrage F <(1 + R)S F =(1+R)S 1 = S T 1 T 1+R y 1 T 1+R d R y, R d F = 1+R y S interest rate 1+R d parity F> 1+R y 1+R d S S + S 1+R d 1+R d S 1+R d + 1 1+R d 1 1+R d 1 1 +F 1 1+R y 1+R d S F 1+R y 1+R d S >

S = 17.835 (T =1/4) TIBOR Tokyo Inter Bank Offer Rate TIBOR 11 8 36 36.8% 1 1+.8/1 1 4 1+ 3.32834/1 16.967 4 d.897 d discount 17.835.897 = 16.938 S TIBOR 4 1.2

5 $1$ S t T K (S T K) + (K S T ) + C, P C P = S K R 1 T 1+R 1+RC T P T =(S T K) + (K S T ) + = S T K C (S K 1+R )+ C S P,C (S T K) + S T t T S t K t K t (S t ) + 1+R t T 2 2.1 1 2 5 K = 12 8/3 φ ψ 2φ + ψ =8 (1) 5φ + ψ = (2)

φ =8/15 ψ = 8/3 1φ + ψ =8/3 (3) arbitrage 6 (i) 9% (ii) φ ψ (1) 1/3+ (2) 2/3 = (3) (3) 1:2 (iii) 2 3 1 2 5 K = 12 8 1 5/4 φ ψ 2φ + 5 ψ =8 (1 ) 4 5φ + 5 ψ = (2 ) 4 φ = 8 15, ψ = 64 3 1φ + ψ =32 (3 ) (1 ) 4 5 1 2 + (2 ) 4 5 1 2 = (3 ) 32 Step 1. Step 2. Step 3. K 1+R K = 12 ( 1/2+7 1/2)/(5/4) = 28 C P =32 28 = 4, S K 12 = 1 1+R 5/4 =4 $8/3$ Black-Scholes

7 2.2 2, 1, 5 K = 12 4 1 2 25 95 5/4 2 8 5 46 18/5 node 1/2 1 (5/4) (95 1 2 4 +2 1 2 + 1 4 )=18 5 K = 12 2 8 5 7 46 7 156/5 2 156/5 Asian option ( 1 2 S t K) + 3 t=

(S T K) + 1 mint S t>h 11 H = 9 H 8 3 Black Scholes Black Scholes Black Scholes BS PDE martingale BS BS 3.1 BS T n n t = T/n e u e d e nd S S T e nu S e R d <R<u short arbitrage n 1 R R (n) = r t = rt/n e nr(n) = e rt u, d u (n) = µ t+σ t, d (n) = µ t σ t µ t = 1 2 (u(n) +d (n) ) ( ) 2 1 σ t = 2 (u(n) d (n) ) µ σvolatility log S(n) T S Q (n) n N((r 2 σ2 )T,σ 2 T )

9 (K S(n) T P = lim E Q (n)[ )+ ] n e nr(n) = e rt E[ (K S e σ TZ+(r 1 2 σ2 )T ) + ]=Ke rt Φ( d ) S Φ( d + ). BS BS Z d ± = 1 σ T log( S Ke ) ± 1 rt 2 σ T x 1 Φ(x) = e y2 /2 dy 2π C = S Φ(d + ) Ke rt Φ(d ) P, C σ µ 3.2 BS C > (1) σ C =Φ(d + ) > (2) S lim C = S (3) σ lim C =(S Ke rt )) +. (4) σ C σ lim C =(S K) + (5) T HV IV HV historical volatility 2 HV =13.8 13.8% BS σ =.138 IV implid volatility BS C σ C σ imply IV HV HV 1 2 IV IV > 5 Black Scholes BS

1 3.3 V t, t [,T] T K T V T <K (V T K) + min{v T,K} = (K V T ) + + K = + K 2% t 2% V t V = 2 (V T 2 ) + 2 σ C S 4 Black Scholes 4.1 Brown (Ω, F, (F t ) t [,T ],P) 4.1.1. (i) X =(X t ) t [,T ] X :Ω [, 1] (w, t) X(w, t) R F B([,T]) (ii) X =(X t ) t [,T ] adapted ( t) X t F t

4.1.2. Adapted W =(W t ) t [,T ] (F t ) Brown ( B t bond W (i) W = (ii) s t W t W s N(,t s) (iii) s t W t W s F s (iv) W path 1 a.e. w Ω t W (t, w) 11 W path 1 nowhere differentiable finites variation n 1/2 n 1 n Brown Black Scholes B t = e rt S t = S e σwt+µt σ, µ σ µ e W log S t 1 Brown (quadratic variation) 4.1.3. W T = lim n 2 n k=1 (W 2 n kt W 2 n (k 1)T ) 2 = T,in probability 2 1 total vaiation T L 2 dw t = ± dt t 1 t φ t T T φ t (S t S t 1 ) t=1

formal W path Stieltjes 1944 (predictable, previsible) H H u dw u adapted 12 H 2 udu <, a.s., φ t F t 1 t 1 4.1.4. Stieltjes T T W t dw t := lim n f t df t = 1 2 (f 2 t f 2 ) 2 n k=1 W 2 n (k 1)T (W 2 n kt W 2 n (k 1)T ) W 2 n (k 1)T Stieltjes T = lim n W t dw t 2 n k=1 1 2 (W 2 n kt + W 2 n (k 1)T )(W 2 n kt W 2 n (k 1)T ) 2 n k=1 = 1 2 W 2 T 1 2 T. 1 2 (W 2 n kt W 2 n (k 1)T )(W 2 n kt W 2 n (k 1)T ) quadratic vaiation 4.1.5. K X t = X + X t H u dw u + K u du H 2 udu 4.1.6. X t Predictable L t L 2 u H2 u du <, a.s., ( t), L u K u du <, a.s., ( t), L u dx u := L u H u dw u + L u K u du LdX = L 2 u H2 u t LdX = L 2 u d X u t

BS X t t C 1 f : R R C 1 f(x t )=f(x )+ t f (X u )dx u 4.1.7. (i) f : R R C 2 f(w t )=f(w )+ f (W u )dw u + 1 2 4.1.5 X f(x t )=f(x )+ f (X u )dx u + 1 2 f (W u )du, a.s. f (X u )d X u (ii) f : R 2 R C 2 f t f(w t,t)=f(w, ) + x (W f u,u)dw u + t (W u,u)du + 1 2 f 2 x (W u,u)du 2 f(w t )=f(w t ) W t + 1 2 f (W t )( W t ) 2 + o( W t ) 2 ( W t ) 2 = t (dw t ) 2 dt dw t dt, (dt) 2 4.1.4 f(x) =x 2 W t Wt 2 = W 2 +2 W u dw u + t 4.1.4 4.1.4 4.1.4 4.1.8. f(x, t) =S e σx+µt BS f(w t,t) f x = σf, f t = µf, 2 f x = 2 σ2 f, S t = S+σ = S + σ S u dw u + µ S u dw u +(µ + 1 2 σ2 ) S u du + 1 2 σ2 S u du S u du X t = σw t + µt, f(x) =S e x 13

14 (i) short-hand df (W t )=f (W t )dw t + 1 2 f (W t )dt df (X t )=f (X t )dx t + 1 2 f (X t )d X t (ii) 4.1.8 ds t = σs t dw t +(µ + 1 2 σ2 )S t dt S t = S e σwt+µt ds t = σs t dw t +(µ + 1 2 σ2 )S t dt, S = S, (SDE) ds t = σs t dw t + µs t dt, S = S, S t = S e σwt+(µ 1 2 σ2 )t µ BS (iii) Z =(Z t ) t=,1,2, f : Z R f(z t+1 ) f(z t )= 1 2 (f(z t+1) f(z t 1))(Z t+1 Z t )+ 1 2 (f(z t+1) 2f(Z t )+f(x t 1)) Z t+1 ±1 4.2 Self financing strategy. Self financing x t 1 t φ t ψ t t =1, 2, t 1 φ t S t + ψ t B t = φ t+1 S t + ψ t+1 B t, a.s. (1)

t = x = φ 1 S + ψ 1 B (x, φ, ψ) self financing finance V t = φ t S t + ψ t B t (t 1), V = x, (1) t 1 V t := V t V t 1 = φ t S t + ψ t B t. (2) (2) x R, φ =(φ t ) t (,T ] ψ =(ψ t ) t (,T ] (x, φ, ψ) self-financing V t = V + φ u ds u + ψ u db u, t, a.s. V t = φ t S t + ψ t B t, t>, V = x dv t = φ t ds t + ψ t db t 15 4.3 Black Sholes BS Black Scholes BS BS BS S t = S e σwt+µt B t = e rt ds t = σs t dw t +(µ + 1 2 σ2 )S t dt d S t = σ 2 St 2 dt db t = rb t dt t C t C(S t,t) C : (, ) [,T] R Self-financing strategy (x, φ, ψ) V t = C(S t,t) dc(s t,t)= C S ds t + C t dt + 1 2 C 2 S d S 2 t = σs t C S dw t +((µ + 1 2 σ2 )S t C S + C t + 1 2 σ2 S 2 t 2 C S 2 )dt dv t = φ t ds t + ψ t db t = σs t φ t dw t +((µ + 1 2 σ2 )S t φ t + rb t ψ t )dt φ t = C S (S t,t) (*) V t = C t C t (S t,t)+ 1 2 σ2 St 2 2 C S (S C t,t)+rs 2 t S (S t,t) rc(s t,t)=, t, a.s., t > S t deterministic C t (S, t)+1 2 σ2 S 2 2 C C (S, t)+rs (S, t) rc(s, t) =, S2 S BS PDE C(S, T )=(S K) +

16 (i) P t = P (S t,t) PDE P (S, t) =(K S) + BS PDE (ii) (*) 3.2 φ t = C S (S t,t)=φ(d + ) BS (iii) µ PDE PDE PDE $S=e^x$ $S$ $L^2$ 5 BS BS S t = S e σwt+µt W t = W t + λt λ = µ + 1 2 σ2 P σ W Q dq dp = 1 e λwt 2 λ2t Grisanov S t = S e σ W t 1 2 σ2t. (1) t E Q [ S t ]=S E Q [ e σ W t 1 2 σ2t ]=S u t E Q [ S t F u ]=S u S t Q (1) ds t = σs t d W t (2) (S T K) + =E Q [(S T K) + ]+ T H t d W t H (2) (S T K) + =E Q [(S T K) + ]+ T H t σs t ds t E Q [(S T K) + ]

17 (i) H PDE K S min S (ii) Feynman Kac 6 Black Scholes BS log S T implied volatility (volatility smile) (i) Levy jump (Merton 1973) (tick data) (ii)(a) CEV (constant elasticity of variance ) Cox (1975) ds t = σst α dw t + µs t dt α<1 log S T (b) Volatility SDE ds t = σ t S t dw t + µs t dt d log σ t = K(c log σ t )dt + θd W t W W c (c) S t = S e rt e σ(wt+ct) 1 2 σ2t dν(σ) B t = e rt

ν (, ) ν BS P Q Markov S t W t t S t W t W t = W t + ct Q BS S T = f(w T ) S T >K W T >f 1 (K) e σ(wt+ct) 1 2 σ2t >k(σ) k (S T K) + = S e rt (e σ(wt+ct) 1 2 σ2t k(σ)) + dν(σ) BS 18 arbitrage explicit Black Scholes