16 7 5

Size: px
Start display at page:

Download "16 7 5"

Transcription

1 16 7 5

2

3 1 (Black-Scholes) 1.1 (derivative securities) (and/or) (contingent claim) (underlying asset) 1 (contingent claim) 2

4 T S T S T K K (S T K) T max{s T K, 0} 1 1 S T K K S T T max{k S T, 0} 1 2 max{s T K, 0} K 0 K 1 1 S T 0 K 1 2 S T T T T T max{s T K, 0} max{k S T, 0} K S T K S T a S T 3

5 0 K K 2 K 1 S T a 0 K 1 K 2 S T S T S T S T T T S T T t < T T t t S t S T S T 1 7 S T S t S T S T S T S T S t K t 1 7 T Time 4

6 1.2 4 (1) (2) (3) (4) Topix t (0 t < ) S t S t ds t = µ S t dt + σ S t dw t (1-1) S t S T = S t e (µ 1 2 σ2 )(T t)+σ(w T W t ), 0 t < T (1-2) S t+dt = S t e (µ 1 2 σ2 )dt+σ W t (1-3) µ σ W t, (0 t < ) (1) W 0 0 (2) 0 t 1 < t 2 < W t2 W t1 0 t 2 t 1 (3) 0 t 1 t 2 t 3 t 4 < W t4 W t3 W t2 W t1 log(s T /S t ) (µ 1 2 σ2 )(T t) σ 2 (T t) dt 0 dw t W t+dt W t (dw t ) 2 = dt, dw t dt = dt dw t = 0, (dt) 2 = 0 5

7 ds t ds t S t+dt S t ) = S t (e (µ 1 2 σ2 )dt+σ dw t 1 x = 0 e x = 1 + x x2 + [ ( = S t µ 1 ) 2 σ2 dt + σ dw t + 1 {(µ 12 ) } ] 2 2 σ2 dt + σ dw t + = S t (µ dt + σ dw t ) t = 1, 2, log(s t+1 /S t ) t = 1, 2, log(s t+1 /S t ) log(s t+2 /S t+1 ) σ 1900 (Bachelier) S t = S 0 + X 1 + X X t, t = 1, 2, X 1, X 2, S t = S 0 e X 1+X 2 + +X t MIT r 1 S t t C(S t, t) T, K, σ, r 6

8 (1-1) dc C(S t+dt, t + dt) C(S t, t) = C t = C t = C dt + ds t C S t 2 St 2 (ds t ) C 2 t 2 (dt)2 + 2 C S t t (ds t) (dt) C dt + (ds t ) 2 2 C S 2 t ds t + 1 S t 2 ( C t + C µ S t C S t 2 St 2 σ 2 St 2 ) dt + C S t σ S t dw t (ds t ) 2 = (µ S t dt + σ S t dw t ) 2 = µ 2 S 2 t (dt) 2 + 2µ σ S 2 t (dt)(dw t ) + σ 2 S 2 t (dw t ) 2 = σ 2 S 2 t dt µ C 1 ( C C dt + C µ S t C S t 2 St 2 σ C 1 ( ) C σ S t C S t σ 2 S 2 t ) dc C = µ C dt + σ C dw t (1-4) S t K 1 F (S t, t) S t µ F σ F df F = µ F dt + σ F dw t (1-5) 2 C F Π C w C Π F w F Π w C + w F = 1 w C w F Π = w C Π + w F Π = w C Π C C + w F Π F w C Π C F C w F Π F F 7

9 t t + dt dπ Π = Π t+dt Π t Π t = 1 { wc Π dc + w F Π Π C F dc = w C C + w df F F } df (1-6) t t + dt C F w C Π C w F Π t S t dt F 1) (1-4) (1-5) (1-6) dπ Π = (w C µ C + w F µ F )dt + (w C σ C + w F σ F )dw t w C σ C + w F σ F = 0 w C w F w C + w F = 1 σ F wc = σ F σ C wf = σ (1-7) C σ F σ C wc w F Π dπ Π = (w C µ C + w F µ F )dt (1-8) dw t Π dt Π ((wc µ C + wf µ F ) Π dt) r r Π dt Π r Π dt r Π dt (wc µ C + wf µ F r) Π dt (no arbitrage) w C µ C + w F µ F = r (1-9) (1-7) (1-9) σ F µ C σ C µ F = r (σ F σ C ) µ C r σ C = µ F r σ F (1-10) 1) (self-financing portfolio) 8

10 C F (1-10) S t µ C r C λ µ C r σ C = λ (1-11) λ t S t C F (1-1) λ µ r σ σ C = λ (1-12) (1-11) (Sharpe) (σ C ) (r) λ (1-11) µ C σ C (1-4) ( ) 1 C C dt + C S t µ S t σ 2 St 2 r 1 C 2 C S 2 t ( C S t σ S t ) = λ C(S t, t) C t + (µ λ σ)s t C + 1 S t 2 σ2 St 2 2 C St 2 rc = 0 (1-12) µ λ σ = r C t + r S t C + 1 S t 2 σ2 St 2 2 C St 2 rc = 0 (1-13) S t S t C(S t, t) (1-13) ] C(S t, t) = E [g(x t ) e r(t t) X t = S t (1-14) C(S t, T ) = g(s T ) (1-15) (Feynman-Kac) X t dx t = r X t dt + σ X t dv t (1-16) V t W t 9

11 g( ) g( ) g(s T ) = max{s T K, 0} (1-17) (identify) C(S T, t) = E[max{X T K, 0} e r(t t) X t = S t ] (1-16) (1-1) X T = X t e (r 1 2 σ2 )(T t)+σ(v T V t ) X t = S t V T V t 0 (T t) Z 0 1 T t Z [ { C(S t, t) = E max S t e (r 1 2 σ2 )(T t)+σ( }] T t Z) r(t t) K, 0 e C(S t, t) = 1 e 1 2 z2 2π { max S t e (r 1 2 σ2 )(T t)+σ } T t z K, 0 f(z)dz e r(t t) (1-18) { A = z S t exp {(r 12 ) σ2 (T t) + σ } T t z } K > 0 { C(S t, t) = S t e (r 1 2 σ2 )(T t)+σ } T t z f(z)dz K f(z)dz e r(t t) (1-19) A A (1-19) 2 { A = z z > 1 σ T t log K e r(t t) + 1 } 2 σ T t f(z) z = 0 K ht σ T t S t f(z)dz N( ) Φ( ) N( ) K e r(t t) N(h t σ T t) 10

12 h t = 1 σ T t log S t Ke + 1 r(t t) 2 σ T t h t (1-19) 1 e σ T t z f(z) = e σ T t z 1 2π e 1 2 z2 = 1 e 1 2 (z2 2σ T t z) 2π { } 1 = e 1 2 (z σ T t) 2 e 1 2 σ2 (T t) 2π { } σ T t 1 z z = z σ T t 1 S t N(h t ) C(S t, t) = S t N(h t ) K e r(t t) N(h t σ T t) Markowitz K

13 0 0 K K 0 K S T F F F 0 S T 0 F S T 0 S T

14 1.3.2 S t K T S T S t K 1 13 K K 0 K S T 0 S T K S T K K 0 S T 0 K S T K S T (pay later option) t a t T t 13

15 (Thorp) (Kassouf) (convertible bond) 14

16 Π = C b S t, b = c S t (Stochastic Control) (Sequential Analysis) (Merton) (Samuelson) 15

17 2 1 (Vanilla Call, Vanilla Put) S t T T S T F t 1 S T F t 16

18 E[(X T F t ) exp( r(t t)) X t = S t ] F t F t = E[X T X t = S t ] 2 [ ( E X T exp ) ] T r(u)du X t t = S t F t = [ ( E exp )] T r(u)du t [ ( ν ν > t E (X T F t ) exp )] T ν r(u)du X t = S t F t F ν F t S t F t T 1, T 2,..., T n 6 R 1, R 2,..., R n r 1, r 2,..., r n 0 = E[(R 1 F t ) exp(r 1 (T 1 t)...)] + E[(R 2 F t ) exp(r 2 (T 2 t)...)].. + E[(R n F t ) exp(r n (T n t)...)] F t... t (1) 2 (2) 17

19 (3) (4) (5) 1 18

20 30 (6) 3 tree method S S t (S, t) S t (Barrier Option) (S t = a) S 0 S t 19

21 S 0 4 rebate S 0 S 0 2 max {S t K, 0} V (s, t) V (s, t) S t S t 1 V t σ2 S 2 2 V V + rs rv = 0 (2-1) S2 S V (S, T ) = max{s k, 0} (2-2) 1 V (0, t) = 0, S V (S, t) S S t = a V (0, t) = 0 V (a, t) = 0 (2-3) (2-1) V (S, t) = C(S, t) ( ) 2r S σ 2 1 ( ) a 2 C a S, t (2-4) 20

22 S 0 > a τ = inf {t S t a, 0 < t < T } (2-5) τ (stopping time) first exit time S t a S t τ 1 (2-1) V (S t, t) = E [ ] max {X T K, 0} I {τ>t } X t = S t (2-6) I { } { } 1 0 τ σb t + µ t log a = b log S t = x a > 0 } x a g(t : x, a) = { σ 2πt exp (x a µ t)2 3 2σ 2 t > 0 (2-7) t first hitting time (reflection principle) V (S t, t) = E [max {X T K, 0} X t = S t ] E [ max {X T K, 0} I {τ>t } X t = S t ] (2-8) 1 2 K > a E [ ] [ { } ] max {X T K, 0} I {τ>t } X t = S t = E max ae r(t t)+σ(w T W u ) K, 0 τ = u g(u : x, b)du = T t x = log S t b = log a (S t > a ) C(a, T u : K, r, σ) g(u : x, b)du (2-8) 2 = + 1 S t ds 1 = S t (µ D) dt + σ dw t V t + (µ D 0) S V S σ2 S 2 rv = 0 21

23 V (S, T ) = max {S t K, 0} V (0, t) = 0 V (S, t) max {S t K, 0} D S t V S = (1) 1 t [0, t] S u, u [0, t] S(u)du S t 1 t t S(u)du t 0 I t = t 0 S(u)du S I t 3 V (S, I, t) di = S(t)dt ( 1 dv = 2 σ2 S 2 2 V S 2 + µ S V S + V t + S V ) dt + S V I S dw t 1 V t + S V I + rs V S σ2 S 2 2 V S 2 rv = 0 { } V (S T, I T, T ) = min S T 1 T T 0 0 S(u)du, 0 { max S T 1 T T 0 R t = 1 t S(u)du S t 0 S(u)du, 0 } { = S T max 1 R } T T, 0 22

24 R S R t ds t = µ S t dt + σ S t dw t dr t = (1 + R(σ 2 µ))dt σr dw t dr t S t S I t V (S, I, t) V (S T, I T, t) = S t H(R t, t) S t R t V = S H H t + (1 rr) H R σ2 R 2 2 H R 2 = 0 { H(R T, T ) = max 1 R } T T, 0 H(, t) = 0 R 0 R = 0 H t + H R confluent hypergeometric function (2) (α-percentile options) S 1, S 2,, S n S(1) S(2) S(n) [nα] S ([nα]) 2 1 [0, t] m(α, t) S u {u S u m(α, t)} α t m(α, t) m(α T ) 2 α < β m(βcdott ) m(α T ) 2 2 S 1 S 2 S n S ([nα]) 0 t 1 t 2 t n

25 m (α,t) 0 t (risk diversification)

26 75% 25% 2.6 [19] [20] [17] ( ksuzuki/jafee.html) [15] [18] [16] 3 25

27 (Martingale) 2) [0, T ] S t r T max {S T K, 0} [0, T ] r S 1 3) B t = 1 e rt B t 1 t t S B φ t ψ t V t V t = φ t S t + ψ t B t (φ t, ψ t ), t [0, T ] 1 (φ, ψ) V V (φ, ψ) dv t, ds t, db t dv t = φ t ds t + ψ t db t (self-financing ) V t = φ t S t + ψ t B t t t + t V t = φ t S t + ψ t B t V t+ t = φ t+ t S t+ t + ψ t+ t B t+ t 2) Harrison and Pliska [22] [23] Harrison and Kreps [21] 3) 26

28 V t = V t+ t V t = φ t S t + ψ t B t + φ t S t+ t + ψ t B t+ t 3 4 φ t S t+ t + ψ t B t+ t = 0 t φ t t + t S t+ t ψ t B t+ t φ t S t+ t + ψ t B t+ t S t+ t φ t+ t B t+ t ψ t+ t φ t 1 ψ t 1 t [0, T ] V T = S T + B T V t V (φ, ψ) T V T = φ T S T + ψ T B T ( max {S T K, 0}) V V (φ, ψ) Cameron-Martin- Girsanov ) (1) (Ω, F, P ) [0, T ] (path) 1 ω ω Ω 4) [25] [24] 3 27

29 F Ω P Q P (Ω, F, P) (2) F t [0, T ] t t F t F t F (F t F ) u < t F u F t F t u t W u W t F t s > t s F s u < t u F u (3) Ω X F F F t t X X t u (u < t) u X = 0.5 X t u t u 0.5 t t X u X E P = [X F u ] F u X P E P P F u s < u E P [E P [X F u ] F s ] F u F s F E P [E P [X F u ] F s ] = E P [X F s ], s < u X Y a b E P [ax + by F t ] = a E P [X F t ] + b E P [Y F t ] 28

30 (4) t [0, T ] X t, t [0, T ] [0, T ] X M M 0 u t T E P [M t F u ] = M u M t, t [0, T ] (Ω, F, P ) {F t : t [0, T ]} X F F t t [0, T ] M t M t = E P [X F t ] P M t u < t E P [M t F u ] = E P [E[X F t ] F u ] = E P [X F u ] M u (Ω, F) Q P E Q [X F t ] 1 Q (5) (Ω, F, P ) {F t : t [0, T ]} 2 M t N t N t M t N t φ t N t = N 0 + t 0 φ u dm u φ t φ t previsible predictable t φ t M N 1 (Complete market) (6) P X X x P {X < x} (= P {ω X(ω) < x}) X p( ) p(x) = d P {X < x} dx 29

31 X P µ σ 2 p(x) = d P {X < x} dx = 1 e (x µ)2 2σ 2 2πσ P ( X) P Q Q X µ ν σ 2 P Q (Ω, F) {F t : t [0, T ]} P Q Q X q( ) q(x) = d ( Q{X < x} = d ) Q{ω X(ω) < x} dx dx = 1 e 1 (x (µ ν)) 2 2 σ 2 2πσ d q( ) P Q p( ) q( ) p( ) dq dp = dxq{ω X(ω) < x} d dxp {ω X(ω) < x} ω P Q dq dp = q(x) p(x), x (, ) dq x Q P dp (Radon-Nikodym) X P Q X (Ω, F) {W t : t [0, T ]} W t ω Ω dq path {W t : t [0, T ]} dp P Q P W t Q γt t γt t 1 e 1 (x γt) 2 2 t 2π t ( = d ) dx Q{W t < x} P W t t 1 2π t e 1 (x γt) 2 2 t 1 2π t e 1 x 2 2 t = e 1 2γtx+γ 2 t 2 2 t = e γx 1 2 γ2 t t W t P Q {W t : t [0, T ]} P Q W t : t [0, T ] 0 < t 1 < t 2 < < t n x i = W ti (ω) i = 1, 2,, n P, Q 30

32 W ti+1 W ti i = 1, 2,, n q (W t1 (ω) = x 1,, W tn (ω) = x n ) p (W t1 (ω) = x 1,, W tn (ω) = x n ) = q (W n 1 t 1 (ω) = x 1 ) i=1 q ( ) W ti+1 (ω) W ti (ω) = x ti+1 x ti p (W t1 (ω) = x 1 ) n 1 i=1 p ( ) W ti+1 (ω) W ti (ω) = x ti+1 x ti = 1 2π t1 e 1 (x t1 γt 1 ) 2 2 t 1 1 2π t1 e 1 x 2 t1 2 t 1 n 1 = e γx t γ2 t1 i=1 n 1 i=1 e γ x i 1 2 γ2 t i 1 2π ti+1 t e 1 (x ti+1 x ti γ(t i+1 t i )) 2 2 t i+1 t i i n 1 i=1 = e γxt γ2 t1 e γ P n 1 i=1 xi 1 2 γ2 P n 1 i=1 ti e γw T (ω) 1 2 γ2 T (n ) 1 2π ti+1 e 1 (x ti+1 x ti ) 2 2 t i+1 t i t i x i = x ti+1 x ti t i = t i+1 t i t i t i t i+1 x i t i W [0, T ] t 1 < t 2 < < t n t 1 t i n dq ω W t (ω) (ω) dp dq dp (ω) = eγw T 1 2 γ 2 T γ γ t γ dq previsible predictable dp (ω) F T W t Q P P Q W t W t P Q P Q γ W t W t W t = W t + γt, t [0, T ] W t Q { } Q Wt < x = Q {W t + γt < x} = Q {W t < x γt} (P {W t < x}) = 31

33 Q W t γt Q Cameron-Martin-Girsanov 5) (7) C M G R T 0 γ2 t dt ] W t P γ t F t previsible E P [e 1 2 < Q 3 (i) Q P (ii) dq dp = R T e 0 γ tdw t 1 R T 2 0 (iii) Wt = W t + T 0 γ2 t dt γ u du Q Q W t t γ u du t [0, T ] (1) S t r 0 1 r t e rt B t (B t = e rt ) 1 S t B t S t T X X = max {S T K, 0} K f(s T ) f( ) (Ω, F, P ) W t P t [0, T ] W t F t S t ( ds t = S t µ + 1 ) 2 σ2 dt + S t σ dw t S t = S 0 e µt+σ W t S t (2) S t Z t t [0, T ] Z t = B 1 S t B 1 X Z t S t t Z t T 5) C M G 32

34 Z t = Bt 1 S t = B 1 t S 0 e µt+σw t = e rt S 0 e µt+σwt = S 0 e (µ r)t+σwt dz t dz t = Z t ((µ t)dt + σ dw t + 1 ) 2 σ2 dt (( = Z t µ t + 1 ) ) 2 σ2 dt + σ dw t = Z t σ d (W t + µ r + 1 ) 2 σ2 t σ γ = µ r σ2 σ dz t = Z t σ d (W t + γt) dz t (3) dt E P [ dzt Z t ] = S t (µ r + 12 σ2 ) dt [ ] dst E P = (µ + 12 ) S σ2 dt t r dt S t (3) P Q C M G dq dp = eγw T 1 2 γ 2T γ = µ r σ2 σ Q Q W t = W t + γt Z t (2) W t Z t dz t = Z t σ d W t Z t = S 0 e 1 2 σ2 +σ W t [ ] dzt E Q = 0 Z t 33

35 P (µ r + 12 ) σ2 Q r = µ σ2 0 u < t < T E Q [Z t F u ] = E Q [ S 0 e 1 2 σ2 u+σ Wu e 1 2 σ2 (t u)+σ( W t W u) F u ] = Z u E Q [ e 1 2 σ2 (t u)+σ( W t W u) F u ] = Z u 1 Z t Q Q dq C M G dp Q P W t (4) (φ t, ψ t ) 0 t T X = max {S T K, 0} X = f(s t ) [ E t = E Q B 1 T X F ] t E t 3.2 E t, t [0, T ] Q u t E Q [E t F u ] = E u E T = B 1 T X Q Z t E t Z t E t Q 3.2 (previsible, predictable) φ t, t [0, T ] de t = φ t dz t φ t S t B t Z t 1 t (φ t, ψ t ) (φ t, ψ t ) ψ t = E t φ t Z t, t [0, T ] φ t ψ t V V t V (φ t, ψ t ) = (φ t S t + ψ t B t ) E t V t E t = φ t Z t + ψ t 1 dv t = φ t ds t + ψ t db t V t V (φ t, ψ t ) Z t ψ t V t V t = φ t S t + ψ t B t = φ t (B t Z t ) + ψ t B t = φ t B t Z t + (E t φ t Z t )B t = B t E t 34

36 dv t = B t de t + E t db t, (db t de t = 0) = B t φ t dz t + E t db t, (de t = φ t dz t ) = B t φ t dz t + (φ t Z t + ψ t ) db t, (E t = φ t Z t + ψ t 1) = φ t (B t dz t + Z t db t ) + ψ t db t = φ t d(b t Z t ) + ψ t db t, (d(b t Z t ) = B t dz t + Z t db t ) = φ t ds t + ψ t db t, (Z t = B 1 t S t ) V t V T = B T E T = B T (B 1 T X) = X V t V (φ t, ψ t ) T X V t V (φ t, ψ t ) X t [0, T ] replication portfolio V t [0, T ] T X V t V 0 X T r 1 V 0 E t Z t Q t [0, T ] E t = E 0 + t 0 φ u dz u [ E 0 = E Q B 1 T F ] 0 E 0 B 0 = 1 E 0 V 0 = φ 0 S 0 + ψ 0 B 0 = φ 0 S 0 + ψ 0 = φ 0 Z 0 + ψ 0 = E 0 dv t = φ t ds t + ψ t db t V T V 0 = T 0 φ u ds u + 35 T 0 ψ u db u

37 V T (= X) V 0 u [0, T ] (S u, B u ) (φ u, ψ u, ) (φ u, ψ u, ) u [0, T ] (Hedge) X φ t φ t V t = φ t S t + ψ t B t t V t V t [ E t (= B t V t ) = E Q B 1 T X F ] t S t B t S t B t 1 e r(t t) = e rt B t (linear homogeneity) T t = 0 E 0 [ E 0 = E Q B 1 T X F ] 0 [ = E Q e rt ] max {S T K, 0} F 0 { }] = e rt E Q [max S 0 e (r 1 2 σ2 )T +σ W T K, 0 { }] = e rt E Q [max ST K, 0 S t d S t = S t (rdt + σd W t ) W t Q 10 (1-18 ) (T t) S t S 0 φ t 3.4 T (stopping time) path,ω IBM 36

38 [1] P.H.Cootner(ed.) The random characters of stock market prices MIT Press (1964) [2] E.D.Thorp and S.T.Kassouf Beat the Market Random House New York (1967) [3] (1988) [4] P.Wilmott,S.Howison and J.Dewynne The Mathematics of Financial Derivatives Cambridge University Press (1995) [5] F.Black and M.Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, Vol.81, pp (1973) [6] R.C.Merton, Theory of rational option pricing, Bell Journal of Economics and Management Sciences, vol.4, pp (1973) [7],, 8, pp (1995) [8] Peter G.Zhang, Exotic Options: A Guide to Second Generation Options, World Scientific (1997) [9] Israel Nelkin(ed.), The Handbook of Exotic Options: Instruments, Analysis and Applications, IRWIN Professional Publishing (1996) [10] Vineer Bhansali, Pricing and Managing Exotic and Hybrid Options, IRWIN Library of Investment & Finance, McGraw Hill (1998) [11] Eric Briys et al, Options, Futures and Exotic Derivatives: Theory, Application and Practice, John Wiley & Sons (1998) [12] William Shaw, Modelling Finaicial Derivatives with Mathematica,Cambridge University Press (1998) [13] D.R.Cox and H.D.Miller, The Theory of Stochastic Processes, Chapman and Hall (1965) [14] Paul Wilmott et al, Option Pricing: Mathematical Models and Computations, Oxford Financial Press (1993) [15], A Note on look-back option based on order statistics., Hitotsubashi J. Commerce & Management 27, pp (1992) [16], On the price of α-percentile options., Working Paper 24, Faculty of Commerce, Hitotsubashi University (1997) [17], A Note on the Terminal Date Security Prices in a Continuous Time Trading Model with Dividends.,J.of Mathematical Economics 20, pp (1991) [18], Some formula for a new type of path-dependent option., Ann.Appl.Probability, 5, pp (1995) [19], Pricing Options with curved boundaries., Mathematical Finance 2, pp (1992) 37

39 [20], Limit theorems on option replication with transaction costs., Ann.Appl. Probability, 5, pp (1995) [21] J.M.Harrison and D.M.Kreps, Martingales and arbitrage in multi-period securities markets, Journal of Economic Theory, Vol.20, pp (1979) [22] J.M.Harrison and S.R.Pliska, Martingale and stochastic integrals in the theory of continuous trading, Stochastic Processes and its Applications, Vol.11, pp (1981) [23] J.M.Harrison and S.R.Pliska, A Stochastic calculus model of continuous trading: Complete markets, Stochastic Processes and its Applications, Vol.15, pp (1983) [24] M.Baxter and A.Rennie, Financial Calculus; An introduction to derivative pricing, Cambridge University Press (1996) [25] R.J.Elliott and P.E.Kopp, Mathematics of Financial Markets, Springer-Verlag (1999) 38

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代 403 81 1 Black and Scholes 1973 Email:kfujiwar@mail.doshisha.ac.jp 82 404 58 3 1 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 Black and Scholes 1973

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1 206 B S option) call option) put option) 7 973 Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 997 Robert Merton A 20 00 30 00 50 00 50 30 20 S, max(0, S-) C max(0,s

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

2 A A 3 A 2. A [2] A A A A 4 [3]

2 A A 3 A 2. A [2] A A A A 4 [3] 1 2 A A 1. ([1]3 3[ ]) 2 A A 3 A 2. A [2] A A A A 4 [3] Xi 1 1 2 1 () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi 1 0 2 ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo @phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

(1) (2) 27 7 15 (1) (2), E-mail: bessho@econ.keio.ac.jp 1 2 1.1......................................... 2 1.2............................... 2 1.3............................... 3 1.4............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

3B11.dvi

3B11.dvi Siripatanakulkhajorn Sakchai Study on Stochastic Optimal Electric Power Procurement Strategies with Uncertain Market Prices Sakchai Siripatanakulkhajorn,StudentMember,YuichiSaisho, Student Member, Yasumasa

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

text.dvi

text.dvi Abstract JP Morgan CreditMetrics (1) () (3) (4) 1 3 3 4 4 5 10 6 16 1 1 BIS 1 3 1 BIS 1 BIS 1 3 ALM (1) Value at Risk () (3) RAROC (Risk Ajusted Return On Capital) (4) 3 5 6 31 99% (= p ) ~x X Prf~x Xg

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1 1. 1-1 00 001 9 J-REIT 1- MM CAPM 1-3 [001] [1997] [003] [001] [1999] [003] 1-4 0 . -1 18 1-1873 6 1896 L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L 6 1986 ( 19 ) -3 17 3 18 44 1 [1990]

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 200520866 ( ) 19 1 ,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 1 1 1.1..................................... 1 1.2...................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

Black-Scholes 1 ( )

Black-Scholes 1 ( ) Black-Scholes Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Green

Green 28 6/-3 2 ax, bx R, L = d2 ax 2 dx 2 + bx d dx 2 L X = {Xt, t }. σ y = inf{t > ; Xt = y} t Xt L y = sup{t > ; Xt = y} 2. Gauss Gamma 3. tree 4. t Black-Scholes Madan-Roynette-Yor [6] σ y E x [exp λσ y

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information