4‐E ) キュリー温度を利用した消磁:熱消磁

Similar documents
) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Microsoft Word - 章末問題

untitled

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

c 2009 i

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

( ) ,

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

untitled

C: PC H19 A5 2.BUN Ohm s law

Gmech08.dvi

重力方向に基づくコントローラの向き決定方法

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

TOP URL 1

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Note.tex 2008/09/19( )

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

LLG-R8.Nisus.pdf

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

QMII_10.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Gmech08.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

pdf


修士論文


Gmech08.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


0.1 I I : 0.2 I

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI


知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

取扱説明書 [N-03A]

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

main.dvi

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

85 4

77

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

05Mar2001_tune.dvi



master.dvi

[ ] [ ] [ ] [ ] [ ] [ ] ADC

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

QMI_10.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Chap9.dvi

Untitled

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1


4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

untitled

I 1

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

PDF

I ( ) 2019

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Mott散乱によるParity対称性の破れを検証

chap9.dvi

untitled

本文/目次(裏白)

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

2

devicemondai

/Volumes/NO NAME/gakujututosho/chap1.tex i

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

15

Transcription:

( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17

Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468 18

469 ( 3min) 469 (3) H Cu O Bi 2 H 2 47 47 N NS S 1 3 4G ) 471 Bi () Bi Bi N S 471 472 472 19

45 () φ 473 1 2 1 2 i 2 1 2 i 1 ο ο S 473 (1) (2) e φ N N 474 dφ e = ( V) dt n n 5A ) ) HeNe 1 9 () 475 11

9 476 1 2 NS S N 477 77 478 111

3 4 6V 3 479 79 48 51 1 S n φ = nsb 1 481 81 1 φ 2 2 S ( m ) B( Wb / m ) S dφ ds B = ( T ) B n ( ) 2 φ = ds = B cosθ ds Wb 1Wb = 1T m θ S B S B B (T) 1A 1m 4 1N 1T 1T = 1 G () 112

5B ) A. C1V L 482 on off () 2V 1V on () off onoff onoff ( ) 483 113

5C ) () 484 Waltenhofen (1) Waltenhofen 48485 6V 485 Waltenhofen 486 N S N S N 486 (2) 4V 4V 487 S N 114

L (1) i A ( Wb) = L i ( Wb) φ ( ) φ L H = Wb / A dφ di e = = L ( V) dt dt 488 ( ) 1 H () 1A 1V 5D ) 6V 489 115

(2) 479 48 2 i 1 1 i (A 1 ) φ (Wb 21 ) φ (Wb 21 = M 21 i1 ) Wb M 21 ( ) dφ21 di1 e2 = = M 21 (V) dt dt φ 21 2 i (A 2 ) 1 φ (Wb 12 ) φ (Wb 12 = M12 i1 ) 49 1 dφ12 di2 e1 = = M12 (V) dt dt M = M = (H) 21 12 M 5E ) 2 (p.114) (p.114) φ 1 2 2 () () 1 1 116

5E ) ) (1) 491 (2 ) 1 25 1 1/25 491 (2) 492 1 2 492 2 q (C) B (Wb / m ) θ (rad) v (m / s) F (N) 493 B ρ F = qvb sinθ = qv B F B = µ H B (T) v (m / s) dt V l v V dx ds = ldx = lvdt ds x dx 94 F ρ θ v ρ 117

dφ Blvdt V = = = vlb (T) dt dt V e = vb (T) B θ V e = vbsinθ (T) v () v n e B () F = ne vb V () 5F ) ) i F B TY5 495 ()() 118

5G ) ) (1) 6V () 496 (2) F i B 497 F = ee + ev B 497 ( ) ( 498 119

46 6A ) ) Komatsu z I B y x 499 499 (1) (mv) 16.3 S (mv) 18.2 N (mv) 14.7 41 6B ) ) ) 12

411 () 6V 411 41 12 ee = evb 47 7A ) (1)L L[ H] v[ V] i = I sinω t [ A] t [] s i [ A] ' v V [ ] i t ' v = L = ω L I ω t = ωli sin( ωt π / 2) cos 41 13 v i L 121

v ' v ( = v )[ V] π v = ω L I sinω t = V sin ω t + 2 V ( ω ) = LI V i = I sinω t = sinω t 414 ωl i v 2 π I V V I I = I = V V = ωl 2 2 V I = ωl ωl ( Ω) (2 ) 415 3 14mA 3mA L L 415 122

(2)C C[] F v = V sin ω t v q[ C] q = Cv = CV sinω t v C i q i = = ω CV cosω t 416 t I = ω CV π i = I cosω t = I sin ω t + 2 2 π I = ω CV V 1 I = ω CV = 417 1 ω C ω C ( Ω) 3 418 14mA 3mA C[] F 1 2 7F 418 123

(3)LRC 419 R[ Ω] C[] F L[ H] v = V sin ω t i A [ ] i = I sin( ω t α ) V R, VC, VL [ V] v = V + V + V R C L v R L i C π i V R V C 419 2 π V L 2 2π T = [] s ω I [ A] V I = Z Z = 2 1 R + ω L ωc 2 1 ω L = Z ωc Z 411 11 [ Ω] f [ Hz ] ω 1 f = = 3 2π 2π LC f 4111 1mA µ F L µ F 4111 124

µ F 7B ) ) LRC V I 4113 LCR V OUT PUT CH1 CH2 1(Hz) 411 112.1F 1k V C L B A R 4113 1 R 2 C A A B B π i = I sinω t i = I sin ω t + π 2 2 2 π 125

3 L 4 LRC A A B B i = I V sinω t = sin ωl ω t π 2 i v 2 π 7C ) ) 51(Hz) CH2 1 4114 4115 5Hz 411 115 DC i t-v v π 2π 3π t R 4116 π 2π 3π t 126

7D ) ) (AM) (FM) () () D.C. X () Y () 1 AM 1Hz 1KHz ( 12 ) 117 4117 1K Hz 1M Hz 1K Hz 127

X Y 1K Hz 1M Hz () 1K Hz 48 ρ (8 1) 128

8A ) ) (Hertz ) () V () 2cm () 4118 18 (Hertz ) 4119 119 412 129

( ) (1) λ = 3cm(1.5GHz) (2) () () (1) () ()(1) () (1) () (1) (2) () () 4125 125 () () ()(1) 13

131

132