2 / 5 Auction: Theory and Practice 3 / 5 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 4 / 5 2

Similar documents
2/50 Auction: Theory and Practice 3 / 50 (WTO) 10 SDR ,600 Auction: Theory and Practice 4 / 50 2

2 / 38 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 3 / 38 Auction: Theory and Practice 4 / 38 2

³ÎΨÏÀ

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10


koji07-01.dvi

統計学のポイント整理

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

Part () () Γ Part ,

xy n n n- n n n n n xn n n nn n O n n n n n n n n

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

tnbp59-21_Web:P2/ky132379509610002944

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

A

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


液晶の物理1:連続体理論(弾性,粘性)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

II 2 II

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m



1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

phs.dvi

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

201711grade1ouyou.pdf

Untitled

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

tokei01.dvi

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x


80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

−g”U›ß™ö‡Æ…X…y…N…g…‰

第86回日本感染症学会総会学術集会後抄録(I)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

K E N Z OU

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

pdf

Maxwell

分散分析・2次元正規分布

6.1 (P (P (P (P (P (P (, P (, P.

1‘Í-1Łfl4’ß.qxd

I 1

s s U s L e A = P A l l + dl dε = dl l l

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

確率論と統計学の資料

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

i 18 2H 2 + O 2 2H 2 + ( ) 3K

CVaR

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Chap11.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

6.1 (P (P (P (P (P (P (, P (, P.101

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

?

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

gr09.dvi

入試の軌跡

#2 3 USA FCC Milgrom Willson FCC FCC USA NFS Market Design USA CO A. Roth #4

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

Acrobat Distiller, Job 128

Transcription:

stakagi@econ.hokudai.ac.jp June 22, 212 2................................................................ 3...................................................... 4............................................................ 7 8...................................................... 9....................................................... 1.......................................................... 11.................................................. 12 IPV 13 SPSB.......................................................... 15 SPSB......................................................... 17 SPSB......................................................... 19 FPSB.......................................................... 2 FPSB......................................................... 22 FPSB......................................................... 23.......................................................... 24 Low Price Auction....................................................... 27 APV 29........................................................... 32 IPV APV 33 (FPSB)................................................... 34............................................................. 35 (SPSB)................................................... 36............................................................. 37 47.................................................... 48..................................................... 49....................................................... 5 1

2 / 5 Auction: Theory and Practice 3 / 5 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 4 / 5 2

Auction: Theory and Practice 5 / 5 (4) (5) = (12) (13) winner s curse Auction: Theory and Practice 6 / 5 3

F(x) {X 1,X 2,...,X n } X (1) X (2)... X (n) X (1) x n F (1,n) (x) = Pr[X (1) x] = Pr[X 1 x,...,x n x] = Pr[X i x] {X i } n i=1 = {F(x)} n X (1) f (1,n) (x) = (d/dx){f(x)} n = n {F(x)} n 1 f(x) X (2) X (2) x x x F (2,n) (x) = {F(x)} n + n C 1 {F(x)} n 1 {1 F(x)} X (2) f (2,n) (x) = n(n 1){F(x)} n 2 {1 F(x)} f(x) = n{1 F(x)} f (1,n 1) (x) k X k f (k,n) (x) = n! (k 1)!(n k)! {F(x)}n k {1 F(x)} k 1 f(x) i=1 [,1] f(x) = 1 F(x) = x f (k,n) (x) = n! (k 1)!(n k)! xn k (1 x) k 1 = xk 1 (1 x) n k B(n k +1,k) x (,1) E[X (k) ] = (n k+1)/(n+1) n 1 X f (n 1,n) (x) = n(n 1) F(x) {1 F(x)} n 2 f(x), x. λ f(x) = λe λ x F(x) = 1 e λ x f (n 1,n) (x) = λn(n 1) e λ(n 1) x {1 e λ x } n 1 E[X (n 1) ] = yf (n 1,n) (y)dy Auction: Theory and Practice 7 / 5 4

8 / 5 High Price Auction Low Price Auction Oral Format Sealed-Bid Format Auction: Theory and Practice 9 / 5 Independent Private Value Affiliated Private Value Common Value Auction: Theory and Practice 1 / 5 Auction: Theory and Practice 11 / 5 5

Auction: Theory and Practice 12 / 5 IPV 13 / 5 Auction: Theory and Practice 14 / 5 V Pr[V < v] = F V (v) V V [, v] Auction: Theory and Practice 15 / 5 n 1 1 v 1 b 1 1 { v1 max Π 1 = 2 j n b j if b 1 > max 2 j n b j if b 1 < max 2 j n b j Auction: Theory and Practice 16 / 5 6

IPV: β II (v) = v (1) β i max j i b j 1. v i > β i v i i v i β i v i > z i > β i z i i v i β i v i > β i > z i z i i 2. β i > v i v i i β i > v i > z i z i i β II (v) = v β II (v) = v Auction: Theory and Practice 17 / 5 IPV: 1 1 v G n 1 (v) = Pr[V 2 v,v 3 v,...,v n v] n = Pr[V j v] = {F V (v)} n 1 j=2 n 1 n 1 Y (1,n 1) max 2 j n V j Y (1,n 1) G n 1 (v) = Pr[Y (1,n 1) v] Auction: Theory and Practice 18 / 5 7

IPV: ExPay II (v) = v v = E[Y (1,n 1) Y (1,n 1) < v] G n 1 (v) = = v v y g n 1(y) G n 1 (v) dy G n 1(v) yg n 1 (y)dy V i F V ( ), V i [, v] v { v } n E[ExPay II (V)] = n yg n 1 (y)dy f V (v)dv = n = v v y = E[V (2,n) ] { v y } f V (v)dv g n 1 (y)dy y {n {1 F V (y)}g n 1 (y)}dy n {V i } n i=1 V (2,n) n V (2,n) n n n Auction: Theory and Practice 19 / 5 V Pr[V < v] = F V (v) V V [, v] Auction: Theory and Practice 2 / 5 8

i v i b i 1 { v1 b Π 1 = 1 if b 1 > max 2 j n b j if b 1 < max 2 j n b j v β(v) β(v) β(v) max β(v j) = β( max V j) = β(y (1,n 1) ) 2 j n 2 j n Auction: Theory and Practice 21 / 5 IPV: v 1 b E[Π 1 (v)] = (v b) Pr[β(Y (1,n 1) ) < b] = (v b) Pr[Y (1,n 1) < β 1 (b)] = (v b) G n 1 (β 1 (b)) β 1 (b) b = β(v) g n 1 (v) = G n 1(v) g n 1 (β 1 (b)) β (β 1 (b)) (v b) G n 1(β 1 (b)) = b = β(v) G n 1 (v) dβ(v) dv +g n 1 (v) β(v) = v g n 1 (v) d dv {G n 1(v) β(v)} = v g n 1 (v) β() = β(v) = 1 G n 1 (v) v y g n 1 (y)dy = E[Y (1,n 1) Y (1,n 1) < v]. (2) Auction: Theory and Practice 22 / 5 9

IPV: i v i v ExPay I (v) = v v = E[Y (1,n 1) Y (1,n 1) < v] G n 1 (v), (Y (1,n 1) max 2 j n V j) ExPay I (v) = ExPay II (v) n E[ExPay I (V)] = E[V (2,n) ] (3) E[ n ] Auction: Theory and Practice 23 / 5 β I (v) = v β II (v) = v 1 G n 1 (v) v v β I (v) v { } Gn 1 (y) dy G n 1 (v) v shading G n 1 (y)dy (4) β I (v) n G n 1 (y) G n 1 (v) = ( ) n 1 FV (y) n, y < v F V (v) β I (v) n β II (v) n n n (5) Auction: Theory and Practice 24 / 5 1

α,β f V (v) = vα 1 (1 v) β 1, F V (v) = B(α, β) v f V (y)dy, G n (v) = {1 F V (v)} n 1, v 1 1 β I (v) = v 1 G n 1 (v) v G n 1 (y)dy 1 1 β II (v) = v (6) n n E[ExPay I (V)] = n E[ExPay II (V)] = E[V (2,n) ] = 1 y n(n 1)f V (y) {1 F V (y)} {F V (y)} n 2 dy Ba\\af_ Fmf[lagf k][gf\ hja[] f = 5 f = 1 f = 5 f = 1 f = 1 Ba\\af_ Fmf[lagf k][gf\ hja[] f = 5 f = 1 f = 5 f = 1 f = 1 Ba\\af_ Fmf[lagf k][gf\ hja[] f = 5 f = 1 f = 5 f = 1 f = 1 VYdmYlagf VYdmYlagf VYdmYlagf D]fkalq..5 1. 1.5 2. 2.5 (Y,Z)=(6,2) D]fkalq..5 1. 1.5 2. 2.5 (Y,Z)=(6,6) D]fkalq..5 1. 1.5 2. 2.5 (Y,Z)=(2,6) Cgkl Cgkl Cgkl Eph][l]\ R]n]fm] Eph][l]\ R]n]fm] Eph][l]\ R]n]fm] 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 fmez]j g^ Za\\]jk fmez]j g^ Za\\]jk fmez]j g^ Za\\]jk Figure 1: High-Price Auction: Valuation = Beta Distribution Auction: Theory and Practice 25 / 5 11

High-Price Auction: (,1) { v 1 < v < 1 f V (v) =, F otherwise V (v) = v < v < 1, G n 1 (v) = {F V (v)} n 1 1 v 1 (4) β I (v) = v 1 G n 1 (v) v G n 1 (y)dy = (7) β II (v) = v (8) a n n E[ExPay I (V)] = n E[ExPay II (V)] = E[V (2,n) ] = Low-Price Auction: λ { λe λ c c f C (c) = c <, F C(c) = 1 e λ c, G n 1 (v) = e λ(n 1) c,c. (11) β I (c) = c+ 1 G n 1 (c) c G n 1 (y)dy = (9) b n ; C (n 1,n) n n 1 n E[ExRev I (C)] = E[C (n 1,n) ] = a V (2,n) (n 2+1,2) b C (n 1,n) n n 1 Auction: Theory and Practice 26 / 5 12

IPV: Low Price c (, c) 1 b Y (n 1,n 1) n 1 E[Π 1 (c)] = (b c) Pr[β(Y (n 1,n 1) ) > b] = (b c) Pr[Y (n 1,n 1) > β 1 (b)] = (b c) G n 1 (β 1 (b)) β 1 (b) b = β(c) G n 1 (x) n 1 x G n 1 (x) = {1 F C (x)} n 1 g n 1 (c) = G n 1(c) g n 1 (β 1 (b)) β (β 1 (b)) (b c)+g n 1(β 1 (b)) = b = β(c) d dv {G n 1(c) β(c)} = c g n 1 (c) c c β( c) = c β(c) = = c+ 1 G n 1 (c) c c 1 G (n 1,n 1) (c) y g n 1 (y)dy = E[Y (n 1,n 1) Y (n 1,n 1) > c] (1) c c G n 1 (y)dy. (11) E[ n ] Auction: Theory and Practice 27 / 5 13

F C (c) c 1 β(c) = c+ G n 1 (y)dy G n 1 (c) c 1 = c+ {1 F C (c)} n 1 {1 F C (y)} n 1 dy c F C (c) 2 2 2 Bidding Function second price n = 5 n = 1 n = 5 n = 1 n = 1 Bidding Function second price n = 5 n = 1 n = 5 n = 1 n = 1 Bidding Function second price n = 5 n = 1 n = 5 n = 1 n = 1 Cost Cost Cost Density..5 1. 1.5 2. 2.5 (a,b)=(6,2) Density..5 1. 1.5 2. 2.5 (a,b)=(6,6) Density..5 1. 1.5 2. 2.5 (a,b)=(2,6) Cost Cost Cost Expected Payment Expected Payment Expected Payment 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 number of bidders number of bidders number of bidders Figure 2: Low-Price Auction: Cost = Beta Distribution Auction: Theory and Practice 28 / 5 14

APV 29 / 5 Auction: Theory and Practice 3 / 5 : x { x } g n 1 (t t) β I (x) = v(y,y;n)dl n 1 (y x), L n 1 (y x) = exp y G n 1 (t t) dt (12) G n 1 (y x) = Pr[Y (1,n 1) y X 1 = x] x : β II (x) = v(x,x;n) (13) v(x,y;n) = E[V 1 X 1 = x,y (1,n 1) = y] a a Pinkse and Tan (25) The Affiliation Effect in First-Price Auctions, Econometrica 73, pp. 263-277. Auction: Theory and Practice 31 / 5 15

Affiliation i X i n : {X 1,X 2,...,X n } (Affiliation) multivariate total positivity n {X 1,X 2,...,X n } κ( ) x > x E[κ(Y (1,n 1) ) X 1 = x ] E[κ(Y (1,n 1) ) X 1 = x], Y (1,n 1) = max 2 j n X j Y (1,n 1) = max 2 j n X j G n 1 (y x) = Pr[Y (1,n 1) y X 1 = x] x V 1 v 1 (X) = v(x 1,X ( 1) ) X ( 1) V 1 v 1 (X) = v(x 1,X ( 1) ) X ( 1) x y v(x,y;n) = E[V 1 X 1 = x,y (1,n 1) = y] (14) IPV V 1 v 1 (X) = v(x 1 ) v(x,y;n) = E[V 1 X 1 = x,y (1,n 1) = y] v(x) (15) n Auction: Theory and Practice 32 / 5 16

IPV APV 33 / 5 IPV APV (FPSB) IPV (15) APV (14) 22 β (v) = {v β(v)} gn 1(v) G n 1 (v) v = β(v)+ β (v) G n 1 (v) g n 1 (v) b i = β(x i ) x i = β 1 (b i ) v i = b i + G n 1( β 1 (b i ) ) g n 1 ( β 1 (b i ) ) = b i + G( b i ) g( b i ) APV Auction: Theory and Practice 34 / 5 IPV paradigm APV paradigm v i = b i + G( b i ) g( b i ) {v i } n i=1 APV IPV Kolmogorov-Smirnov Figure 3: / Auction: Theory and Practice 35 / 5 17

IPV APV (SPSB) IPV (5) APV (13) APV Auction: Theory and Practice 36 / 5 Yahoo JAL ANA IPV GW APV Auction: Theory and Practice 37 / 5 Yahoo! 5 1 25 Auction: Theory and Practice 38 / 5 18

l i p i,l n l β 1 E[p i,l n l ] = β +β 1 n l ρ τ (p i,l n l ) = β,τ +β 1,τ n l ρ τ (p n) n p 1τ IPV Auction: Theory and Practice 39 / 5 Figure 4: Auction: Theory and Practice 4 / 5 19

JAL Figure 5: JAL Auction: Theory and Practice 41 / 5 ANA Figure 6: ANA Auction: Theory and Practice 42 / 5 2

JAL Figure 7: JAL Auction: Theory and Practice 43 / 5 JAL Figure 8: JAL Auction: Theory and Practice 44 / 5 21

ANA Figure 9: ANA Auction: Theory and Practice 45 / 5 ANA Figure 1: ANA Auction: Theory and Practice 46 / 5 22

47 / 5 PPS 24 (PPS) PPS PPS PPS PPS PPS PPS (ex. ) Auction: Theory and Practice 48 / 5 23

n PPS( ) PPS δ δ δ PPS 14 Ultra High Voltage Consumer s Cost, Social Cost High Voltage 12 Cost (Yen/kWh) 1 8 6 14 12 1 8 6 14 12 1 n = 4 n = 6 n = 1 Type Consumer Social 8 6..1.2.3.4.5..1.2.3.4.5 Preference Rate (δ) Figure 11: Auction: Theory and Practice 49 / 5 24

p B PPS p B+ PPS p A Ultra High Voltage Inefficient Allocations High Voltage.6.5 Probability.4.3.2.1..6.5.4.3.2.1..6.5.4.3 n=4 n=6 n=1 Probability Total p B p B+ p A.2.1...1.2.3.4.5..1.2.3.4.5 Preference Rate (δ) Figure 12: Auction: Theory and Practice 5 / 5 25