168. W rdrop. W rdrop ( ).. (b) ( ) OD W rdrrop r s x t f c q δ, 3.4 ( ) OD OD OD { δ, = 1 if OD 0

Similar documents
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

85 4

セゾン保険_PDF用.indd

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

B

untitled

わが国企業による資金調達方法の選択問題

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

i 18 2H 2 + O 2 2H 2 + ( ) 3K


Erased_PDF.pdf

: , 2.0, 3.0, 2.0, (%) ( 2.


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

untitled

03.Œk’ì

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

30

CVMに基づくNi-Al合金の

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

( )

プログラム

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

艥尾

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33

ohpmain.dvi

Korteweg-de Vries


Chap11.dvi

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

i

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

マイクロメカニクスの基礎と応用

廃棄物処理施設生活環境影響調査指針

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

CV CV CV --

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

chap10.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

2011de.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

01.Œk’ì/“²fi¡*

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

untitled

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

Z: Q: R: C:

untitled

弾性論(Chen)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2

Vol

kou05.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

0226_ぱどMD表1-ol前

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

統計学のポイント整理

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

all.dvi

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS


Mathematical Logic I 12 Contents I Zorn

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,


ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

半 系列における記号の出現度数の対称性

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

基礎数学I

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

ohpr.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

Microsoft Word - ip38.doc

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37


untitled

タイトル

Transcription:

167 p (n) im p(n+1) im p (n+1) im p(n) im < ε (3.264) ε p (n+1) im 1 4 [1],, :, Vol.43, pp.14-21, 2001. [2] Rust, J., Optiml Replcement of GMC Bus Engines: An Empiricl Model of Hrold Zurcher, Econometric, Vol.55,pp.999-1033, 1987. [3] Hotz, V. J., nd R. A. Miller, Conditionl Choice Probbilities nd the Estimtion of Dynmic Models, Review of Economic Studies, Vol.60, pp.497-529, 1993 [4] V,Aguirregbiri., P,Mir., Swpping the Nested Fixed Point Algorithm: A Clss of Estimto for Discrete Mrov Decision Models 3.3 3.3.1 ().. TDM ITS.

168. W rdrop. W rdrop ( ).. (b).. 1.. 2. ( ) OD W rdrrop. 3.4. r s x t f c q δ, 3.4 ( ) OD OD OD { δ, = 1 if OD 0

3.3 169 W rdrop (3.65). ( c u ) 0 c u = 0 (3.265) u OD. (3.65). OD q x. (3.66). min z (x) = x 0 t (ω) dω (3.266) x x = (..., x...). (3.70) (3.71). f = q (3.267) f 0 (3.268) (3.72) (3.73). x = r f δ, (3.269) s c = t δ, (3.270) (3.72) OD (3.73).

170 (c) (3.66) (3.70) (3.73). L (f, u) = z [x (f)] + u ( q f ) (3.271) f f = (..., f,...). u OD u = (..., u,...). (3.71). (3.73) (3.272). f L (f, u) = 0 nd f L (f, u) f 0 (3.272) (3.273). L (f, u) u = 0 (3.273) (3.273) (3.70) f (3.274). f mn l L (f, u) = f mn l z [x (f)] + f mn l (3.274) (3.275). ( u q ) f (3.274) f mn l z [x (f)] = z (x) x b x b f mn l (3.275) (3.275). (3.276). z (x) x b = x b x 0 t (ω) dω = t b (3.276)

3.3 171 (refue5) (3.275) (3.277). x b f mn l = δ mn b,l (3.277) (3.276) (3.277) (3.275) (3.73) (3.278). z [x (f)] f mn l b t b δ mn b,l = c mn l (3.278) OD mn l. (3.274). (3.279). f f mn l = { 1 if r = m, s = n nd = l 0 (3.279) q u fl mn. (3.274) (3.280) f mn l ( u q f ) = u mn (3.280) (3.278) (3.280) (3.274) (3.281). f mn l L (f, u) = c mn l u mn (3.281) (3.281) (3.272) (3.273) (3.71) (3.282). ( f c u ) = 0 c u 0 f = q f 0 (3.282) (3.282) (3.66) (3.70) (3.71).

172 3.3.2 () W rdrop. W rdrop. W rdrop. W rdrop... (3.283) (3.285). min z (x) = x t (x ) (3.283) (b) f = q (3.284) f 0 (3.285). ( ).. 3.65 6. q = 6. (3.286).

3.3 173 t 1 [x 1 ] = 50 + x 1 t 2 [x 2 ] = 50 + x 2 t 3 [x 3 ] = 10x 3 (3.286) t 4 [x 4 ] = 10x 4 3.65. O 1 4 D O 3 2 D 50 + 3 + 10 3 = 83 498. 3.66 5. 5 (3.287). t 5 = 10 + x 5 (3.287) 3.66. O 1 4 D O 3 2 D O 3 5 4 D 92 552 5.. 3.3.3 ()...

174 3.65 : 3.66 :. W rdrop... (b) ( )..OD V (3.288). V = c (3.288)

3.3 175. OD K P P (3.289). = exp ( ) θ c exp ( θ c ) (3.289) K θ. θ. θ θ. OD f f (3.291). = q P = q exp ( ) θ c exp ( θ c ) (3.290) K (3.291) (3.292). min z (x) = x 0 t (ω) dω Ω 1 θ q K ( f ln f ) q q (3.291) f K = q f 0 (3.292) Ω OD. (3.293). x = Ω f K δ, (3.293)

176 3.3.4.. F rn W olfe. () F rn W olfe F rn W olfe.. u n n OD. 0: x 0 = 0 t0. ll or nothing ( 0 ) ( )x 1. n = 1. 1: x n tn. OD u n. 2: t n OD y n.dn = yn xn d n. 3: (3.294) x n+1 (3.66) α n. (3.295) α n. α n x n+1

3.3 177. t n+1 u n+1. OD x n+1 = x n + αn d n = x n + αn ( y n xn ) (3.294) min 0 α 1 4: x n +αn (y n xn ) 0 t (ω) dω (3.295) (3.296) ( ) n = n + 1 1. x n+1. (3.296) κ. u n+1 u n u n+1 κ (3.296) 3.3.5 F rn W olfe. (MSA; MethodofSuccessiveAverges) SimplicilDecomposition. ().. (Dil )..

178 0: x 0 = 0 t0. ( )x 1. n = 1. 1: x n tn. 2: t n OD y n.dn = yn xn d n. 3: α n (3.297). (3.294) x n+1. t n+1 4: α n = 1 n + 1 (3.297). (3.298) ( ) n = n + 1 1. x n+1. (3.298) κ. ( x n+1 x n x n x n (3.299). ) 2 < κ (3.298) x n = xn + xn 1 + x n 2 + + x n m+1 m (3.299)

3.3 179 4 n n x n n + 1 xn+1. (3.299) m. (b) (=).. (3.291) 2 ( ) (3.300). ) q ( f q ln f q Ω K = { x r ln xr + ( ) ( ln r R j N I j x r I j x r )} (3.300) x r ( r ) R N I j j. (3.300).. 0: x 0 = 0 t0. OD ( )x r,1 n = 1.. 1: x n = tn. r R x r,n

180 2: t n OD y r,n.d r,n = y r,n x r,n d r,n. 3: α n (3.302). x r,n+1 = x r,n + α n d r,n (3.301) x r,n+1 α. (3.303) α. min 0 α 1 r R 4: (c) x n+1 t 0 (ω) dω ( x r,n + α n d r,n 1 + { ( x r,n θ j N I j { ( ln x r,n I j ) ln ( x r,n ) } + α n d r,n ) } + α n d r,n ) + α n d r,n (3.302) (3.296) ( ) n = n + 1 1. x n+1 SimplicilDecomposition. SimplicilDecomposition... 0: OD ˆK.

3.3 181 x 0 = 0 t0. ˆK. ll or nothing f,1 x 1. n = 1. 1: x n tn. ˆK. 2: f n+1 = (f,n+1 ) (3.303). min f n+1 Ω A x n+1 0 t (w) dw 1 θ q ˆK ( ) f,n+1 q ln f,n+1 q (3.303) (3.304). f,n+1 0 f,n+1 ˆK = q x n+1 = Ω f ˆK δ, (3.304). 2-0: g,1 = f,1 y 1 = x1. m = 1. 2-1: (3.305) t m t m = t. ( ) y m (3.305)

182 t m OD h, z m (3.306) (3.307). ( ) h,m = q z m exp ˆK exp = Ω θ ( A θ e,m d m. δ, tm A h,m ˆK δ, tm ) (3.306) δ, (3.307) (3.308) (3.309) e,m = h,m 2-2: g,m (3.308) d,m = z m ym (3.309) η m (3.310) (3.311). g,m+1 = g,m + η m e,m (3.310) y m+1 = y m + ηm d m (3.311) g,m+1 y m+1 η. (3.312). min 0 η m 1 Ω A 1 θ q y m +ηm d m 0 t (w) dw ˆK ( g,m,m +η m e ln g,mq,m +η m e q ) (3.312)

3.3 183 2-3: g m = h m f,n+1 = g,m+1 x n+1 = y m+1 3. m = m + 1 2-1. 3: (d) n = n + 1 1. x n+1 f,n+1. (Genetic Algorithm) ( GA ) DNA 1 ( ) GA 3.67 ( ) ( ) GA 3 0 : 10 3 (2, 3, 5) 3.68 10 2 (3, 7) STEP2 ( )

184 STEP0: STEP1: STEP2: No STEP3: 3.67 Yes GA

3.3 185 1 2 2 3 3 5 1 2 3 4 5 6 7 3.68 8 9 10 11 12 / encode decode 1 1 : (t ) 1 STEP2: 3 ( )

186 2 ( ) 2 1 1 2 2 3.69 1 0 1 0 1 1 0 1 1 A B C D E 1 A 2 3 D 5 2 1 2 3 4 5 2 1 B C 4 E 3.69 2 2

3.3 187 3 : t t + 1. GA 2 GA GA ( ) GA GA

188 (e) 3.70. (3.313). [ t 1 = 10 1 + 0.15 ( x 1 ) ] 4 [ 2 t 2 = 20 1 + 0.15 ( x 2 ) ] 4 [ 4 t 3 = 25 1 + 0.15 ( x 3 ) ] 4 (3.313) 3 F rn W olfe 3.71 3.73. x 1 = 3.58 x 2 = 4.62 x 3 = 1.81. κ = 0.001. 3.70 3.71 F rn W olfe : 0 (f) Bell nd Cssir(2002)[5] n n

3.3 189 3.72 F rn W olfe : 3.73 F rn W olfe : 1 2 3, 4 1 OD n (i) Wrdrop h j = 0 g j (h) > min g (h)for ll pths j (3.314) h j > 0 g j (h) = min g (h) = g OD (h) (3.315) h g n h j = pj n h j = 0 p j = 0 p j j g j (h ) OD g OD (h) h p j = 0 (ii) n s π j π j j

190 s = j π j p j (3.316) p j j n s c = j p j c (s, π j ) (3.317) c (s, π j ) j n-1 s ( ) j p 1j = p 2j =... = p nj = p j (3.318) c 1 (s 1, π 1j ) = c 2 (s 2, π 2j ) =... = c n (s n, π nj ) (3.319) h p n j h j c (s, π j ) = g j (h) (3.320) j n h j n p j c (s, π j ) > min c (s, π ) = 0 (3.321) p j > 0 c (s, π j ) = min c (s, π ) (3.322) (Nsh, 1951) n

3.3 191 Networ demon n+1 demon demon 1 demon n+1 G 1 G 1 : solve simultnenously c (s, q) = p j q c (s, π j ) for ech networ user, (1,..., n) j c n+1 (s, q) = q c n+1, (s ) for the demon plyer n + 1 (3.323) q c (s, π j ) j n-1 s c n+1, (s) demon n s c n+1, (s) c n+1, (s) = p j c (s, π j ) = j c (s) (3.324) (Nsh(1951)) n B 1

192 B 1 : solve simultnenously U : mx c (s, q) = q g j (h) subject to q = 1, q 0 q j L : min c n+1 (s, q) = vu(h) q t u (x)dx (3.325) h u 0 subject to v u = uj h j, h j = n, h 0 j j g j (h) h j t u (v u ) u uj j u 1 0 n B 1 G 1 B 1 demon ( ) F or U : q = 0 j q > 0 j F or L : h j = 0 j h j > 0 j g j (h)h j < mx r g j (h)h j = mx r g j (h)q < min r g j (h)q = min r g jr (h)h j (3.326) j g jr (h)h j (3.327) j g r (h)q (3.328) g r (h)q (3.329) n g j (h)h j = cn+1, (s) (3.330) j

193 n q = 0 c n+1, (s) < mx c n+1,r (s) r (3.331) q > 0 c n+1, (s) = mx c n+1,r (s) r (3.332) n j n g j (h)q = c (s, π j )q = c (s, π j ) (3.333) h j = pj n = p j n p j = 0 c (s, π j ) < mx c (s, π r ) r (3.334) p j > 0 c (s, π j ) = mx c (s, π r ) r (3.335) n n+1 (Nsh, 1951)[6] n B 1 n+1 G 1 [1] : I,, 2003 [2] : 2,, 2006 [3] Yosef Sheffi: Urbn Trnsporttion Netwo: Equilibrium Anlysis With Mthemticl Progrmming Methods, Prentice Hll, 1985 [4] : D Vol.62 No.4 pp505-518 2006.10 [5] Michel G. H. Bell, Chris Cssir: Trnsporttion Reserch Prt B,Vol.36,pp.671-681,2002. [6] Nsh,J.:Non-coopertive gmes:annls of Mthemtics,Vol.54,pp.286?295,1951.