i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

Similar documents
Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

等質空間の幾何学入門

Dynkin Serre Weyl

main.dvi

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

1

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c


(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

Bruhat

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X


sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

直交座標系の回転

( ) (, ) ( )

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

第5章 偏微分方程式の境界値問題

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

OCAMI

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

newmain.dvi


『共形場理論』

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

all.dvi

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

all.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

meiji_resume_1.PDF


S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

SUSY DWs

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

2010 ( )

−g”U›ß™ö‡Æ…X…y…N…g…‰

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

n ( (

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

tnbp59-21_Web:P2/ky132379509610002944

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

SO(2)

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

熊本県数学問題正解

K g g g g; (x, y) [x, y] g Lie algebra [, ] bracket (i) [, ] (ii) x g [x, x] = 0 (iii) ( Jacobi identity) [x, [y, z]] + [y, [z, x]] +

I , : ~/math/functional-analysis/functional-analysis-1.tex

all.dvi

agora04.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

untitled

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

数学Ⅱ演習(足助・09夏)

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

I II III IV V

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

untitled

四変数基本対称式の解放

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,



量子力学 問題

DVIOUT-HYOU

January 27, 2015

susy.dvi

Transcription:

R-space ( ) Version 1.1 (2012/02/29)

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

ii 1 Lie 1 1.1 Killing................................ 1 1.2 Cartan................................ 2 1.3................................ 3 1.4................................. 5 2 Lie Lie 7 2.1 Lie................................ 7 2.2 Lie............................ 10 3 11 3.1 s-.................................... 11 3.2 s-................................ 12 4 R-space 14 4.1 Lie R-space...................... 14 4.2 s- R-space.............................. 15 4.3 R-space................................ 15 4.4 Kähler C-............................... 15 5 17 5.1.................................. 17 5.2 s-.............................. 17 5.3............................ 18 6 Hermite 19 6.1..................................... 19 6.2 Kähler C-space.......................... 19

iii 6.3 Hermite.......................... 20

1 1 Lie, Lie,. 1.1 Killing, g Lie. 1.1.1 Killing 1.1 B : g g R Killing : B(X, Y ) := tr(ad X ad Y ). (1.1) 1.2 Killing B, : B([X, Y ], Z) + B(Y, [X, Z]) = 0 ( X, Y, Z g). (1.2) 1.1.2 Killing 1.3 Lie gl n (R) Killing B : B(X, Y ) = 2ntr(XY ) 2tr(X)tr(Y ). (1.3) 1.4 Lie g g, Killing B, B. B B,, B = B g g. (1.4) 1.5 Lie sl n (R) Killing B : B(X, Y ) = 2ntr(XY ). (1.5)

2 1 Lie 1.6 Lie so(p, q) Killing. 1.1.3 Killing 1.7 ([6], p50, Theorem 1.45) Lie, Killing. 1.8 ([6], pp249 250, Corollary 4.26, 4.27) Lie, Killing. 1.2 Cartan, g Lie, B g Killing. 1.2.1 Cartan θ : g g *1, θ Lie, θ 2 = id. 1.9 θ : g g Cartan, B θ : B θ (X, Y ) := B(X, θ(y )) (for X, Y g). (1.6) Cartan θ, ±1. 1.10 Cartan θ g = k p Cartan., k 1, p 1. 1.11 Cartan g = k p : [k, k] k, [k, p] p, [p, p] k. (1.7) 1.2.2 Cartan 1.12 Lie sl n (R), Cartan : θ(x) := t X. (1.8) *1 involution

1.3 3 Cartan sl n (R) = k p, : k = so(n), p = {X sl n (R) X = t X}. (1.9) 1.13 Lie so(p, q), Cartan : θ(x) := I p,q XI p,q. (1.10) Cartan so(p, q) = k p, : {( ) } k = so(p) so(q), p = t C C M C q,p (R). (1.11) 1.2.3 Cartan 1.14 Lie g, id Cartan., Cartan,. 1.15 ([6], p358, Corollary 6.18, 6.19) Lie g, Cartan., Cartan ( ). 1.3, g Lie, B Killing, θ Cartan, g = k p Cartan. 1.3.1 1.16 X p, ad X B θ. ad X.,., a p., a a. 1.17 α a, α : g α := {X g [H, X] = α(h)x ( H a)}. (1.12)

4 1 Lie 1.18 α a (a ), : α 0, g α 0.,, = (g, a). 1.19 = (g, a), : (1) g = g 0 ( α g α) B θ, (2) [g α, g β ] g α+β ( α, β {0}), (3) θ(g α ) = g α ( α {0}). (1). 1.3.2 E ij. 1.20 sl n (R), Cartan, : (1) a := { a k E kk tr = 0} p, (2) g 0 = a, (3) g εi ε j = span{e ij }, ε i ( a k E kk ) := a i, (4) = {ε i ε j i j}. 1.21 sl n (C), Cartan, : (1) a := { a k E kk tr = 0} p, (2) g 0 = a, (3) g εi ε j = span{e ij }, ε i ( a k E kk ) := a i, (4) = {ε i ε j i j}. 1.22 so(1, n), Cartan, : (1) a := span{e 12 + E 21 } p, (2) g 0 = so(n 1) a, (3) α a α(e 12 + E 21 ) = 1, = {±α}. 1.23 so(2, 2), Cartan, : (1) a := span{e 13 + E 31, E 24 + E 42 } p, (2) g 0 = a, (3) = {±ε 1 ± ε 2 }, ε 1, ε 2 a : ε i (a 1 (E 12 + E 21 ) + a 2 (E 24 + E 42 )) = a i. (1.13)

1.4 5 1.24 so(2, n) ( n > 2), Cartan, : (1) a := span{e 13 + E 31, E 24 + E 42 } p, (2) g 0 = so(n 2) a, (3) = {±ε 1 ± ε 2, ±ε 1, ±ε 2 }, ε 1, ε 2 a. 1.3.3 1.25 ([6], p378, Theorem 6.51) a, a p., K. K k Lie. a, g., G/K. Cartan,. 1.26 ([6], p380, Corollary 6.53) = (g, a),. 1.4 1.4.1 1.27. Λ := {α 1,..., α r }, : (i) Λ a, (ii) α, c 1,..., c r Z 0 c 1,..., c r Z 0 : α = c 1 α 1 + + c r α r. 1.28, Λ = {α 1,..., α r }, α = c 1 α 1 + +c r α r. (1) α, c 1,..., c r Z 0. (2) α, c 1,..., c r Z 0. (3) α, : c 1α 1 + + c rα r, c 1 c 1,..., c r c r.

6 1 Lie 1.4.2 1.29 sl n (R), α i := ε i ε i+1 (i = 1,..., n 1), {α 1,..., α n 1 }., α = ε 1 ε n = α 1 + + α n 1. 1.30 so(2, 2), α 1 = ε 1 ε 2, α 2 = ε 1 + ε 2, {α 1, α 2 }. 1.31 so(2, n) ( n > 2), α 1 = ε 1 ε 2, α 2 = ε 2, {α 1, α 2 }., α = ε 1 + ε 2 = α 1 + 2α 2. 1.4.3 = (g, a), (, ).,, Weyl. 1.32 ([6], p383, Theorem 6.57) N K (a) Z K (a), K a., N K (a)/z K (a), Weyl.

7 2 Lie Lie, Lie Lie,.,. Lie, graded Lie algebra, Lie. g Lie. 2.1 Lie 2.1.1 Lie 2.1 g = k Z gk Lie, : [g p, g q ] g p+q ( p, q Z). 2.2 Lie g = k Z gk ν, : (i) g ν 0, (ii) p > ν g p = 0. 2.1.2 Lie 2.3 sl 3 (R) sl 3 (C), 1 Lie : g 1 :=, g0 :=, g1 := (2.1)

8 2 Lie Lie 2.4 sl 3 (R) sl 3 (C), 1 Lie : g 1 :=, g0 :=, g1 := (2.2) 2.5 sl 3 (R) sl 3 (C), 2 Lie : g 2 :=, g 1 :=, g0 :=, g 1 :=, g2 :=. (2.3) 2.6, sl n (R) sl n (C), Lie. 2.1.3 Lie 2.7 Lie g = k Z gk, Z g, : g k = {X g [Z, X] = kx} ( k Z). (2.4) Lie, Z g., = (g, a), Λ = {α 1,..., α r }. 2.8 a {H 1,..., H r } Λ, : α i (H j ) = δ ij ( i, j). 2.9 Z := n 1 H 1 + + n r H r ( n 1,..., n r Z 0 )., : (1) ad Z Lie, Z. (2) α, (1) Lie α(z). Z Lie, : g k = g α. (2.5) α(z)=k

2.1 Lie 9 2.1.4 Lie 2.10 sl 3 (R), Λ = {α 1, α 2 }., (1) Λ : H 1 := 1 2 1, H 2 := 1 1 1 3 3 1 2, (2.6) (2) Z = H 1, H 2 1 Lie, (3) Z = H 1 + H 2 2 Lie. 2.11 so(1, n), Z = E 12 + E 21 1 Lie. : g 1 = g α, g 0 = g 0, g 1 = g α. (2.7) 2.12 Lie, so(n + 1, C) 1 Lie g C = (g 1 ) C (g 0 ) C (g 1 ) C. 2.13 so(2, n) ( n > 2), (1) Z = H 1 1 Lie, (2) Z = H 2 2 Lie, (3) Z = H 1 + H 2 3 Lie. 2.1.5 Lie Lie., Lie, 2.9,. 2.14 Lie g = k Z gk,., Lie Der(g). Z, Z p ( Cartan g = k p ). 2.15 (cf. [8]) Lie g = k Z gk Z., Cartan θ : θ(z) = Z. θ(z) = Z, : θ(g k ) = g k ( k). gradereversing., a Λ, ( ).

10 2 Lie Lie 2.2 Lie 2.2.1 Lie 2.16 Lie q g, : Lie g = k Z gk, q = k 0 gk. Lie, Lie. 2.17 Lie g = k Z gk Z a., Lie q : q = g 0 g α. (2.8) α(z) 0 2.2.2 Lie Lie, Lie,. [6] Lie.,.

11 3 3.1 s- 3.1.1 s- g = k p Cartan, Lie (G, K). 3.1 K p s- : ϕ : K GL(p) : g Ad g p. (3.1) 3.1.2 s- 3.2 sl n (R) = so(n) Sym 0 n(r) s-, SO(n) Sym 0 n(r) ; g.x := gxg 1. (3.2) 3.3 sl n (C) = su(n) Herm 0 n(c) s-, SU(n) Herm 0 n(c) ; g.x := gxg 1. (3.3) 3.1.3 s- G/K, g K, g : G/K G/K : [h] [gh] (3.4) o = [e] (g ) o : T o (G/K) T o (G/K) (3.5).

12 3 3.4, s-,., s-,, s-,. 3.2 s- s-, v p K.v. 3.2.1 3.5 α, : k g α = 0, p g α = 0. 3.6 α, k p : k α := k (g α g α ), p α := p (g α g α ). (3.6) 3.7 sl 3 (R), α = ε 1 ε 2, : 1 k α = k = span 1 1 p α = p = span 1,. (3.7) 3.8 : (1) k 0 := k g 0 Lie, (2) α, k α = k α, p α = p α. 3.9 α, : k α p α = g α g α. 3.10, : (1) dim k α = dim p α = dim g α ( α ), (2) ( k p ): k = k 0 ( α>0 k α), p = a ( α>0 p α). (3.8)

3.2 s- 13 3.2.2 s-, K v Lie k v. 3.11 v p, : k v = {X k [X, v] = 0}. (3.9) 3.12 Z a, : k Z = k 0 k α. (3.10) α(z)=0 3.13 sl 3 (R) = so(3) Sym 0 3(R) s-, : (1) Z = H 1, so(3) Z = so(2) (= so(1) so(2)), (2) Z = H 2, so(3) Z = so(2) (= so(2) so(1)), (3) Z = H 1 + H 2, so(3) Z = 0. 3.14 so(1, n) = so(n) p s-, k = so(n)., 0 Z a, : k Z = k 0 = so(n 1). 3.15 so(2, n) = so(2) so(n) p s-, k = so(2) so(n)., : (1) Z = H 1, k Z = k 0 k α2 = so(n 1), (2) Z = H 2, k Z = k 0 k α1 = so(n 2) so(2), (3) Z = H 1 + H 2, k Z = k 0 = so(n 2). 3.2.3 s- 3.16 s-, : {c 1 H 1 + + c r H r a c 1,..., c r 0}. (3.11) 3.17 s-, k Z, 2 r.

14 4 R-space 4.1 Lie R-space 4.1.1 R-space 4.1 q g Lie., G g Lie Lie, Q := N G (q)., G/Q R-space. 4.1.2 R-space (1) 1 k 1 < < k s < n, (k 1,..., k s ) F k1,...,k s (R n ). F k1,...,k s (C n ). 4.2 sl 3 (R) 3 Lie R-space, : G 1 (R 3 ), G 2 (R 3 ), F 1,2 (R 3 ). 4.3 sl 3 (C) 3 Lie R-space, : G 1 (C 3 ), G 2 (C 3 ), F 1,2 (C 3 ). 4.4 F k1,k 2,...,k s (R n ) R-space.

4.2 s- R-space 15 4.2 s- R-space 4.2.1 s- R-space 4.5 R-space, s-.., s- R-spece. 4.2.2 R-space (2) 4.6 sl 3 (R) 3 R-space, : SO(3) Sym 0 3(R) := {X sl 3 (R) t X = X}, g.x := gxg 1. (4.1) 4.7 sl 3 (C) 3 R-space, : SU(3) Herm 0 3(C) := {X sl 3 (C) t X = X}, g.x := gxg 1. (4.2) 4.8 so(1, n) R-space, S n 1. 4.9 so(1, n) = g 1 g 0 g 1 so(n + 1, C) Lie. R-space, SO(n + 1)/(SO(2) SO(n 1)) = G 2 (R n+1 ) (= Q n 1 (C)). 4.3 R-space 4.10 1 Lie g = g 1 g 0 g 1 R-space ( R-space ). 1 Lie, 1. 4.11 sl 3 (R) 2 1 Lie R-space, G 1 (R 3 ) G 2 (R 3 ). 4.4 Kähler C- 4.12 Lie g C = k Z (gc ) k R-space Kähler ( Kähler C-space ).

16 4 R-space 4.13 sl 3 (C) 2 1 Lie R-space, G 1 (C 3 ) G 2 (C 3 ). Hermite. F 1,2 (C 3 ) Kähler. 4.14 : (1) M Kähler C-space, (2) M Lie, (3) M = G/C(S), G Lie, S G, C(S) S. (4) M Kähler.

17 5 R-space.. 5.1 5.1.1 5.1 Lie H M.,, *1. 5.1.2 5.2 H M, 0. 5.3 SO(n) R n 1. 5.4 SO(3) Sym 0 3(R) s- 2. 5.5 SU(3) Herm 0 3(C) s- 2. 5.2 s- 5.6 Z a *2, : α, α(z) 0. *1 cohomogeneity *2 regular element

18 5 5.7 Z := H 1 + + H r. 5.8 Z a., s-, : Z K.Z, Z. 5.9 Cartan g = k p s-, dim a (, g ). 5.3 5.3.1 5.10 K p s-, B θ p p. 5.11 SO(n) Sym 0 n(r) s-, B θ p p (X, Y ) = 2ntr(X t Y ). 5.12 Z p B θ (Z, Z) = 1., : K.Z {X p B θ (X, X) = 1} = S n 1. (5.1) 5.3.2 5.13 dim a = 2, Z a B θ (Z, Z) = 1., K.Z p S n 1.,,. 5.14 g = so(1, p) so(1, q) : S p 1 S q 1 S p+q 1 ( p). (5.2) 5.15 sl 3 (R) : F 1,2 (R 3 ) S 4 Sym 0 3(R) = R 5. (5.3) 5.16 sl 3 (C) : F 1,2 (C 3 ) S 7 Herm 0 3(C) = R 8. (5.4), 2 Lie., A 1 + A 1, A 2, B 2 (= C 2 ), BC 2, G 2.

19 6 Hermite 6.1 6.1.1 6.1 M Hermite. N M M (real form), : M σ, N = Fix(σ; M). 6.1.2 6.2 R n C n. 6.3 RP n CP n. 6.2 Kähler C-space 6.4 Lie g = k Z gk R-space G/Q, g C = k Z (gk ) C Kähler C-space G C /Q C., G/Q G C /Q C. G C /Q C Hermite. Kähler C-space Hermite, ( ). 6.5 F k1,...,k s (R n ) F k1,...,k s (C n ).

20 6 Hermite 6.3 Hermite 6.4 : 6.6 R-space, Hermite. 6.7 Hermite, 6.4., Hermite R-space. Hermite M, : (1) M 1 Lie g = g 1 g 0 g 1. (2) g l. (3) 1 Lie l = l 1 l 0 l 1. (4) (3), (1). R-space. 6.8 M = G 2 (R n+2 ) (= Q n (C)), : S n, S n 1 S 1 /Z 2, S n 2 S 2 /Z 2, S n 3 S 3 /Z 2,... (6.1)

21 [1] A. Arvanitoyeorgos, An introduction to Lie Groups and the Geometry of homogeneous Spaces. Student Mathematical Library, 22. American Mathematical Society, Providence, RI, 2003. [2] A. Besse, Einstein manifolds. Ergeb. Math., 10. Springer-Verlag, Berlin, 1987. [3] P. B. Eberlein, Geometry of nonpositively curved manifolds. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1996. [4] S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Graduate Studies in Mathematics, 34. American Mathematical Society, Providence, RI, 2001. [5] S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems. Nagoya Math. J. 112 (1988), 81 115. [6] A. W. Knapp, Lie groups beyond an introduction. Second edition. Progress in Mathematics, 140. Birkhäuser Boston, Inc., Boston, MA, 2002. [7] A. L. Onishchik and È. B. Vinberg, Lie Groups and Lie Algebras, III. Structure of Lie groups and Lie algebras. Encyclopaedia of Mathematical Sciences, 41. Springer-Verlag, Berlin, 1994. [8] N. Tanaka, On the equivalence problems associated with simple graded Lie algebras. Hokkaido Math. J. 8 (1979), 23 84. [9] H. Tamaru, The local orbit types of symmetric spaces under the actions of the isotropy subgroups. Diff. Geom. Appl. 11 (1999), 29 38. [10] H. Tamaru, On certain subalgebras of graded Lie algebras. Yokohama Math. J. 46 (1999), 127 138.