a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

Similar documents
TOP URL 1

TOP URL 1

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

eto-vol1.dvi

TOP URL 1

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

量子力学 問題

Mott散乱によるParity対称性の破れを検証

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

スケーリング理論とはなにか? - --尺度を変えて見えること--

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

GJG160842_O.QXD

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc



ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

main.dvi


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


chap9.dvi

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

DVIOUT-fujin

薄膜結晶成長の基礎3.dvi

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

SO(2)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

QMII_10.dvi

Untitled

薄膜結晶成長の基礎4.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1).1-5) - 9 -

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ) AGD 2) 7) 1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

untitled

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

Microsoft Word - 章末問題

( )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

1 2 2 (Dielecrics) Maxwell ( ) D H

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Z: Q: R: C: sin 6 5 ζ a, b

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

プログラム

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *


t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1


A

IA


ms.dvi

(Onsager )

構造と連続体の力学基礎

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

量子力学A

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Transcription:

解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017

1. 1..1 a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i I σ i η ab diag,,, q e A a U 1 m c 4 GeV ev H 0 βmc cα π qa 0 π p qa H 0 E qa 0 O cα π U exp iβo/mc H UH 0 U iħu t U H UH U iħu t U... 1/m é 1/ m q ù H ( ) 0 = β mc qa ê + π ë m + σ m ú + û B 0 3 1/m 1/ m qλ qλ H ( ) 0 = σ ( π E- E π)- div E 4 λ ħ /4m c zitterbewegung. vierbein 1 μ a L = Ψ éie aγ c pμ qaμ i Γμ mc ù êë ( - + )- úû Ψ 5 e μ a e μ aη ab e ν b Vol. 7, No. 9, 017 017

U 1 A a Ψ qψ γ a ΨA a j a qψ γ a Ψ 4 1 g μν γ μ x e μ a x γ a {γ μ x, γ ν x } g μν x U 1 ab Γ μ ω μ Σ ab ω ab μ e a λ μ δ λ ν Γ λ μν e νb Γ λ μν Σ ab 1/4 γ a, γ b 1 k Σ ij = æσ O ö ² ijk, i, j 1,, 3 ç çèo σ k ø ( = ) A μ j μ qψ γ μ Ψ ω ab μ j μ ab Ψ γ μ Σ ab Ψ 4 3.3 Ω t x t, r x t, r dr dr Ω r dt dt dt d s dct dr g μν d x μ d x ν g 00 1 u g 0i g i0 u i g ij δ i, ij j 1,, 3 u Ω r/c e 0 0 1 e 0 j 0 e i 0 u i e i j δ i j e α 0 δ α 0 η α i u i e α i δ α i γ 0 x iβ iγ i x iβ α i u i Γ 0 00 Γ 0 i0 Γ 0 ij Γ jk 0 Γ i 00 i ² ijk Ω j u k /c 0 u i Γ j i 0 ² ijk Ω k /c Γ 0 x γ i γ j ² ijk Ω l /4c i Σ Ω /c Γ i x 0 H βmc c α u π qa 0 Σ Ω 6 4, 5 v 1/iħ r, H cα Ω r cα Ω r Σ Ω Spin-rotation coupling c α u π cα π r π Ω H 0 βmc cα π qa 0 H H 0 r π Σ Ω r p Σ Ω J r p Σ U exp J Ωt /iħ H 0 dynamical phase iħu t U r p Ω r p Σ.4 E qa 0 Ω r π Σ O cα π U exp iβo/mc 1/m 3 017

é 1/ m q ù ( H ) β π = mc + + σ B + qa0-( r π + Σ) Ω 7 ê ë m m ú û Σ Ω 1/ m e H ( e ) = π æ ö ea0 m - - ç çè + ø - r π σ Ω σ m B 8 1/m 1/ m qλ qλ H ( e ) = σ ( π E - E π)- div E 9 E E Ω r B E Ω r B 14 E, B E rot, B rot E rot E Ω r B B rot B 15 E rot E H SR S Ω γ H SR γs Ω /γ B Ω Ω /γ H 0 r π S Ω 3. 3.1 Ω H SR γs Ω /γ B Ω Ω /γ 0 Ω 100 Hz nt g 6 g 10 7 g 1 g 3. 100 Gd 4 Vol. 7, No. 9, 017 017

3 khz ΔM Ω ΔH 8 * 1 Gd khz 1 khz 1 mm G 3 Gd g g Gd Tb Dy.00 0.08 1.53 0.17 1.15 0.3 4 9 g 3.3 3 3 NMR NMR 10 1 * 1 4 Gd Tb Dy 9 g g g 5 NMR a, b NMR c 7.356 MHz 115 In NMR Ω 0 Ω 10 khz 1.17 mt NMR 5 a, b NMR B 0 H γ N I B 0 B N Ω I γ N B N Ω Ω /γ N 5 017

6 115 In 9 Si 5 c 7.356 MHz 115 In NMR Ω 0 Ω 10 khz B N Ω 1.17 mt 6 InP 115 In Si 9 Si 115 In 9 Si 4. 4.1 13 H SO qλ / ħ σ π E E π v σ 1/iħ r, H SO qλ /m σ E 7 a B Ω E Ω Ω r B r ΩrB b H MSO E Ω Ω 0, 0, Ω B 0, 0, B E Ω E Ω r B E rot r r Ω B H MSO Ω qλ / ħ σ π E E π v σ 1/iħ r, H MSO Ω qλ /m σ E Ω E Ω 14 4. Pt Ω H SR S Ω B Ω Ω /γ F H SR γs B Ω 6 Vol. 7, No. 9, 017 017

v r, t v 0 dr dr v r, t dt dt dt H =-S ω 10 SV, 16 ω v 4..1 8 16 17 18 4.. 19 9 Hg ω 8 9 Hg 5. 7 017

1 S. Maekawa, S. Valenzuela, E. Saitoh, and T. Kimura, ed., Spin Current Oxford Univ. Press, Oxford, 01. F. W. Hehl, P. von der Heyde, and G. D. Kerlick, Rev. Mod. Phys. 48, 393 1976. 3 K. Hashimoto, N. Iizuka, and T. Kimura, Phys. Rev. D 91, 086003 015. 4 C. G. de Oliveira and J. Tiomno, Nuovo Cimento 4, 67 196. 5 F. W. Hehl and W.-T. Ni, Phys. Rev. D 4, 045 1990. 6 S. J. Barnett, Phys. Rev. 6, 39 1915. 7 A. Einstein and W. J. de Haas, Verh. Dtsch. Phys. Ges. 17, 15 1915. 8 M. Ono et al., Phys. Rev. B 9, 17444 015. 9 Y. Ogata et al., Appl. Phys. Lett. 110, 07409 017. 10 H. Chudo et al., Appl. Phys. Express 7, 063004 014. 11 H. Chudo et al., J. Phys. Soc. Jpn. 84, 043601 015. 1 K. Harii et al., Jpn. J. Appl. Phys. 54, 05030 015. 13 J. Sinova et al., Rev. Mod. Phys. 87, 113 015. 14 M. Matsuo, J. Ieda, E. Saitoh and S. Maekawa, Phys. Rev. Lett. 106, 076601 011. 15 L. I. Schiff, Proc. Natl. Acad. Sci. U.S.A. 5, 391 1939. 16 M. Matsuo et al., Phys, Rev. B 87, 18040 R 013. 17 D. Kobayashi et al., Phys. Rev. Lett. 119, 0770 017. 18 M. Hamada, T. Yokoyama, and S. Murakami, Phys. Rev. B 9, 060409 R 015. 19 R. Takahashi et al., Nat. Phys. 1, 5 016. 017 3 Spintronics in Non-Inertial Frames Mamoru Matsuo, Eiji Saitoh, and Sadamichi Maekawa abstract: We review the interconversion phenomena between spin and mechanical angular momentum in moving bodies. In non-inertial frames, spin-dependent inertial forces emerge, which enable the conversion from mechanical angular momentum into spins. In particular, this article focuses the recent results on spin manipulation and spincurrent generation from mechanical motion, including rigid rotation, elastic deformations and fluid motion. 8 Vol. 7, No. 9, 017 017