Mott散乱によるParity対称性の破れを検証

Similar documents
Drift Chamber

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

rcnp01may-2

TOP URL 1

QMI_10.dvi

thesis.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

main.dvi

[ ] [ ] [ ] [ ] [ ] [ ] ADC


Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

本文/目次(裏白)

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

25 3 4

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e


untitled

85 4



19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional


3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

05Mar2001_tune.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Muon Muon Muon lif

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

QMII_10.dvi

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

IA

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Donald Carl J. Choi, β ( )

重力方向に基づくコントローラの向き決定方法

0406_total.pdf

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

PDF

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

LLG-R8.Nisus.pdf

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

プログラム

untitled

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

,,..,. 1

meiji_resume_1.PDF

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

( ) ,

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V

( ) ( )


Note.tex 2008/09/19( )

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

FPWS2018講義千代


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

i

パーキンソン病治療ガイドライン2002

研修コーナー

gr09.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

19 /

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

main.dvi

4‐E ) キュリー温度を利用した消磁:熱消磁

eto-vol1.dvi

untitled

量子力学A

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

untitled

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Transcription:

Mott Parity P2 Mott

target Mott Parity

Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ 5 ν µ µ γ γ γ 5 Γ vector axialvector Parity Lagrangian Parity ( V V, A A ) ( V A )

Mott setting x-y target y y = 65 16 =14 =22.5n (0 n 14) =0, 0 =90 PMT B spin Mott count @(, ) > count @(,0) 0 PMT C z e Beam PMT A x y

z = 65 ) 0.25 1.028 0.5 1.056 1 1.116 2 1.245

Rutherford dσ 0( θ ) dω = ( Zαm) r 4 4 4 p sin 2 θ 2 α = 2 e 4πε 0hc Dirac µ ( µ ν ν µ µν ( γ ( i qa ) m) ψ = 0 γ γ + γ γ = 2g ) µ µ spin

Mott [ ] [ ] { } [ ] [ ] 2 1 2 2 0 1 2 2 2 2 0 1 2 2 0 0 0 0 4 2 2 2 2 ) ( ) ( ) ( ) ( ) ( ) (cos 1) ( 1) ( 2 ln sin exp ) (1 ) (1 cot 2 ) ( ) (cos 1) ( 1) ( 2 ln sin exp ) (1 ) (1 2 ) ( ) ( ) ( ) ( ) ( sin ) ( ) )sin( ( 1 ) ( : ) )sin( ( 1 2 sin 4 ), ( 2 2 2 ) ( 0 α ρ ρ ρ ρ θ θ θ θ β α θ θ θ θ θ βγ α θ φ φ θ β θ σ φ φ φ θ θ α φ θ σ πρ π θ θ θ θ σ = + Γ Γ + + Γ Γ + = + + + Γ Γ = + + + + Γ Γ = + = + Ω = = Ω = + = + Ω k iq iq iq e iq k iq k iq k e D P D k D k i iq iq iq q G P D k kd i iq iq iq i F Z q G F G F Z S S d d P PS p m Z d d k k k k i k i k k k k k k k k k k k k d d D

Mott

S

- u d p u n p + e + ν e u n d d e 0 helicity = +1/2 W ν e momentum spin e np -e momentum spin Source Electron emissions from the Hg-203 to Tl-203 decay, measured by A. H. Wapstra, et al., Physica 20, 169 (1954).

P N( N( ) ) + N( N( ) ) Lagrangian ( ) L int = G F 2 µ µ µ 5 µ 5 jµ j ( j = e γ (1 + αγ ) ν + p γ (1 + αγ ) ) n P = * α + α 1+ α 2 β V A current ( ) P = β

spin E r B r spin velocity spin velocity + + = E g B g B g mc es dt s d r r r r r r r r β γ γ β β γ γ γ 1 2 ) ( 1 1 2 1 1 2 spin Thomas

spin r ds dt = e 1 r s mc γ + 1 E 90 r r ( β ) θ s π γ 1 = 2 γ spin spin velocity E r P = β β cosθ s

energy

1st: 2nd: 3rd:

poisson

d=15 d=30 d=10 d=10

kv V

Source 137 Cs Photo Multiplier C 20 25 30 35kV electrode Source

137 Cs

energy (kev) Mean (ch) Sigma (ch) 629 922.3 77.9 77.9 1.1 0 20.5 10.3 10.3 0.0) 0.697 0.061 kev/ch 0keV 14.3 7.4 ch

0kV

20kV 25kV

30kV 35kV

Voltage (kv) Mean (kev) Sigma (kev) (kev) 20 151( 2) 30.2( 1.4) 129 25 163( 2) 39.8( 1.4) 165 30 201( 1) 48.7( 1.0) 194 35 234( 1) 57.3( 0.8) 242 0.24

PMT C PMT A 16 22.5 Back Scattering

58mm PMT B PMT C PMT A PMT A,B 65 Scintillator 0.25mm 0.210 1.67% PMT PMT C Scintillator 5mm

70mm 15mm Null Asymmetry 0.01mm Background Asymmetry 0.0025mm

OR PMT A PMT B AMP AMP DISC A D C Computer PMT C AMP DISC ADC AMP 10 Discriminator Threshold 80mV(A) 500mV(B) Gate Signal ADC Gate Signal AMP Computer Channel

137 Cs 30.2y - 0.514 MeV 94% 1.176 Mev 6% 0.662 Mev 85%

1. 0 2. 0.5Pa 3. 30kV 4. AMP, Discriminator, ADC PMT 1kV 5.,, Count Rate 2 (Computer PMT A PMT B Count Rate ) 6. 7. 90,180,270 2 6

*** CORPORATION Source PMT A B energy peak C B A Source(137Cs)

*** CORPORATION Photo multiplier A Source 137 Cs

*** CORPORATION Photo multiplier B Source 137 Cs

*** CORPORATION

*** CORPORATION Photo multiplier A Source 137 Cs

*** CORPORATION Photo multiplier A - threshold 60mV

*** CORPORATION Photo multiplier B Source 137 Cs

*** CORPORATION Photo multiplier B - threshold 500mV

*** CORPORATION 0 : PM A : PM B : PM C

*** CORPORATION 90 : PM A : PM B : PM C

*** CORPORATION 180 : PM A : PM B : PM C

*** CORPORATION 270 : PM A : PM B : PM C

*** CORPORATION

*** CORPORATION PM A = 0 Au Al

*** CORPORATION PM A = 0

*** CORPORATION PM A = 0 Au Al

*** CORPORATION PM B = 0 Au Al

*** CORPORATION PM B = 0

*** CORPORATION PM B = 0 Au Al

*** CORPORATION

*** CORPORATION

*** CORPORATION

*** CORPORATION

*** CORPORATION PM A

*** CORPORATION PM B

*** CORPORATION

*** CORPORATION