Kaluza-Klein(KK) SO(11) KK 1 2 1

Similar documents
q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

余剰次元のモデルとLHC

SUSY DWs

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

TeV b,c,τ KEK/ ) ICEPP

超対称模型におけるレプトンフレーバーの破れ

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

PowerPoint プレゼンテーション

Muon g-2 vs LHC (and ILC) in Supersymmetric Models

素粒子物理学2 素粒子物理学序論B 2010年度講義第11回

,,..,. 1

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

YITP50.dvi

Microsoft Word - 素粒子物理学I.doc

main.dvi

本文/目次(裏白)

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x


輻射シーソー模型での ヒッグスインフレーションとその ILC での検証 松井俊憲 ( 富山大学 ) 共同研究者 : 兼村晋哉 鍋島偉宏 S.Kanemura, T.Matsui, T.Nabeshima, Phys. Le9. B 723, 126(2013) 2013 年 7 月 20 日 ILC

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

0. Intro ( K CohFT etc CohFT 5.IKKT 6.


Supersymmetry after Higgs discovery

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

nakayama.key


meiji_resume_1.PDF

TOP URL 1

研修コーナー

パーキンソン病治療ガイドライン2002

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2


Mott散乱によるParity対称性の破れを検証

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

スライド タイトルなし

素粒子物理学2 素粒子物理学序論B 2010年度講義第10回

抄録/抄録1    (1)V

Z: Q: R: C: sin 6 5 ζ a, b

総研大恒星進化概要.dvi

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

nenmatsu5c19_web.key

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

ミューオンで探る 素粒子標準模型を越える物理 久野 ( ひさの ) 純治 ( 宇宙線研 ) R C N P 研究会 ミューオン科学と加速器研究 日時 : 年 1 0 月 2 0 日 ( 月 ) 2 1 日 ( 火 ) 場所 : 大阪大学核物理研究センター 1

スケーリング理論とはなにか? - --尺度を変えて見えること--

SO(2)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Undulator.dvi

Happy 60th Birthdays! Ishikawa-san & Kawamoto-san

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

phaleron decoupling and E hase transitio 2/45

3 exotica

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

1

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

LHC-ATLAS Hà WWà lνlν A A A A A A

粒子と反粒子

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

main.dvi

DVIOUT-fujin

untitled

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

ohpr.dvi

TOP URL 1

500 6 LHC ALICE ( 25 ) µsec MeV QGP

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

nsg02-13/ky045059301600033210

虚数化学ポテンシャルを利用した QCD 相図の研究 柏浩司 理研 BNL 研究センター 共同研究者 : 河野宏明 ( 佐賀大学 ) 八尋正信 ( 九州大学 ) 境祐二 ( 理化学研究所 ) 佐々木崇宏 ( 九州大学 ) Robert D. Pisarski Vladimir V. Skokov (B

05Mar2001_tune.dvi

( ) : (Technocolor)...

arxiv: v1(astro-ph.co)

陦ィ邏・2

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

29

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

ohpmain.dvi

pptx

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

D.dvi

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

susy.dvi

Transcription:

Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @

Kaluza-Klein(KK) SO(11) KK 1 2 1

1. 2. 3. 4. 2

1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h ヒッグス場が真空で非自明な期待値を持つ クォークとレプトンは湯川相互作用を通して質量獲得する G SU(3) W SU(2) B U(1) 質量獲得 ( 光子を除く ) 電弱対称性 SU(2)xU(1) の電磁対称性 U(1) への 自発的対称性の破れ 3

. 4

?...?? (?)????? (?)? 5

?...?? (?)????? (?)? 6

?...?? (?)?? (?)???? 7

. 8

. 9

U(1) Y SU(3) C SU(2) L G SM SU(5) GUT SU(5) G SM G GUT 10

U(1) Y SU(3) C SU(2) L G SM SU(5) GUT SU(5) G SM G GUT 11

SU(3) SO(5) U(1) 5 SO(5) A M / \ 4 A µ W W A y SM H SO(5) U(1) GHU in RS [1 6, K.Agashe et al 05;Y.Hosotani et al. 08-15] 12

2. SO(11) [7, Y.Hosotani,N.Y. 15] ( ) [7, Y.Hosotani,N.Y. 15] ( ) [8, N.Y. 16] 13

SO(11) [7, Y.Hosotani,N.Y. 15] { SO(10) SO(11) BC SO(4) SO(7) on Planck brane on TeV brane = BC SO(4) SO(6) SU(2) L SU(2) R SU(4) C Φ SU(3) C SU(2) L U(1) Y θh SU(3) C U(1) em VEV 14

SO(11) [7, Y.Hosotani,N.Y. 15] { SO(10) SO(11) BC SO(4) SO(7) on Planck brane on TeV brane = BC SO(4) SO(6) SU(2) L SU(2) R SU(4) C Φ SU(3) C SU(2) L U(1) Y θh SU(3) C U(1) em VEV 15

SO(11) [7, Y.Hosotani,N.Y. 15] { SO(10) SO(11) BC SO(4) SO(7) on Planck brane on TeV brane = BC SO(4) SO(6) SU(2) L SU(2) R SU(4) C Φ SU(3) C SU(2) L U(1) Y θh SU(3) C U(1) em VEV 16

SO(11) [7, Y.Hosotani,N.Y. 15] { SO(10) SO(11) BC SO(4) SO(7) on Planck brane on TeV brane = BC SO(4) SO(6) SU(2) L SU(2) R SU(4) C Φ SU(3) C SU(2) L U(1) Y θh SU(3) C U(1) em VEV 17

SO(11) [7, Y.Hosotani,N.Y. 15] { SO(10) SO(11) BC SO(4) SO(7) on Planck brane on TeV brane = BC SO(4) SO(6) SU(2) L SU(2) R SU(4) C Φ SU(3) C SU(2) L U(1) Y VEV θh SU(3) C U(1) em ( ) [9, Y.Hosotani 83] 18

Venn SO(11) SO(10) (5),(6) (4) BC Planck SU(5) G SM (2) Φ (1) G P S (3) BCs 5D (A M = A µ A z ) A (z=1) µ A (z=z L ) µ A (z=1) z A (z=z L ) z (1) G SM N N D D (2) SU(5) G P S N D D N (3) SU(5) G P S D eff N D D (4) SO(10) (SU(5) G P S ) D eff D D N (5) SO(5)/SO(4) D D N N (6) SO(7)/SO(6) D N N D 19

SO(11) 5 SO(11) A M / \ 4 A µ SM g, W, B A y SM H SO(11) GHGUT in RS [7, 10, Y.Hosotani,N.Y. 15] 20

SO(11) 5 SO(11) Ψ (a) 32 4 ψ (a) SM q (a), l (a) / \ L 4 ψ (a) R SM u (a), d (a), e (a) SO(11) GHGUT in RS [7, 10, Y.Hosotani,N.Y. 15] 21

SO(11) Bulk field A M Zero modes G µ W µ A µ φ G SM (8, 1) 0 (1, 3) 0 (1, 1) 0 (1, 2) 1/2 SL(2, C) (1/2,1/2) (1/2,1/2) (1/2,1/2) (0,0) Bulk field Zero modes G SM (3, 2) +1/6 (3, 1) +2/3 (3, 1) 1/3 (1, 2) 1/2 (1, 1) 1 SL(2, C) (1/2,0) (0,1/2) (0,1/2) (1/2,0) (0,1/2) Ψ (a) 32 q (a) L u (a) R d (a) R l (a) L e (a) R 22

[11, N.Y. 15] SO(11) [7, Y.Hosotani,N.Y. 15] [8, N.Y. 16] SO(11) [A.Furui,Y.Hosotani,N.Y. ] 23

[11, N.Y. 15] SO(11) [7, Y.Hosotani,N.Y. 15] [8, N.Y. 16] SO(11) [A.Furui,Y.Hosotani,N.Y. ] 24

3. (1-loop) [12, E.g., Slansky 81] d dlog(µ) α 1 i (µ) = b1 loop i 2π, α i := g 2 i /4π, T (R):R Dynkin, b 1 loop i = 11 3 Vector (Real) T (R V ) + 2 3 Fermion (Weyl) T (R F ) + 1 6 Scalar (Real) T (R S ) 25

(1-loop) [12, E.g., Slansky 81] b 1 loop i d dlog(µ) α 1 i (µ) = b1 loop i 2π, µ α 1 i (µ) = α 1 i (µ 0 ) b1 loop i 2π ( µ log [11 13, McKay-Patera 81;Slansky 81;N.Y. 15] β µ 0 ). 26

G µ W µ B µ Q u c d c L e c φ SU(3) C 8 1 1 3 3 3 1 1 1 SU(2) L 1 3 1 2 1 1 2 1 2 U(1) Y 0 0 0 1/6 2/3 1/3 1/2 1 1/2 b SM i = 11 3 C 2(G i ) + 2 3 Fermion (Weyl) T (R i ) + 1 3 Higgs (Complex) T (R i ). 27

G µ W µ B µ Q u c d c L e c φ SU(3) C 8 1 1 3 3 3 1 1 1 SU(2) L 1 3 1 2 1 1 2 1 2 U(1) Y 0 0 0 1/6 2/3 1/3 1/2 1 1/2 b SM i = 0 22/3 11 + n F 4/3 4/3 4/3 + n H 1/10 1/6 0 = +41/10 19/6 7. 28

[8, E.g., N.Y. 16] Standard Model 60 50 40 30 20 10 0 100 10 5 10 8 10 11 10 14 10 17 Α 1 (@ µ = M Z 91 GeV) Ref. [14, PDG 14] Μ α 3C 0.118, α 2L = α em sin 2 θ W, α 1Y = 5α em 3 cos 2 θ W, α 1 em 128, sin 2 θ W 0.23. 29

(@ µ = M GUT ) α 3C (M GUT ) = α 2L (M GUT ) = α 1Y (M GUT ) α em (µ) = 3α 1Y (µ)α 2L (µ) 3α 1Y (µ) + 5α 2L (µ), sin2 θ W (µ) = 3α 1Y (µ) 3α 1Y (µ) + 5α 2L (µ). sin 2 θ W (M GUT ) = 3α 1Y 3α 1Y + 5α 2L (M GUT ) = 3 8 0.23 sin2 θ W (M Z ) 30

(1-loop) [12, E.g., Slansky 81] d dlog(µ) α 1 i (µ) = b1 loop i 2π, b 1 loop i KK µ? KK 4 k m KK (k Z) k KK 1-31

5D GHGUT d dlog(µ) α 1 i (µ) = b1 loop i 2π, km KK < µ < (k + 1)m KK β b 1 loop i =b 0 i + k b KK. 32

5D GHGUT { d b0 i dlog(µ) α 1 i (µ) = 2π for µ < m KK b0 i 2π, k bkk 2π for km KK < µ < (k + 1)m KK KK k k µ m KK. km KK < µ < (k + 1)m KK α 1 i (µ) = α 1 i (m KK ) b0 i 2π log µ µ m KK m KK m KK b KK 2π. 33

5D GHGUT b KK < 0 α i (µ) 2π m KK b KK µ b KK > 0 α i (µ) near α 1 i (m KK ) bkk 2π µ m KK 34

SO(11) A M Ψ (a) 32 Ψ (b) 11 SO(11) 55 32 11 5D RS 1 5 4 4 Orbifold BC (, ) (, ) β 1st KK b KK = ( 11 3 Vector + 1 ) C 2 (SO(11)) + 4 6 3 Scalar Fermion (Dirac) T (R F ). 35

SO(11) A M Ψ (a) 32 Ψ (b) 11 SO(11) 55 32 11 5D RS 1 5 4 4 Orbifold BC (, ) (, ) β 1st KK b KK = 7 2 C 2(SO(11)) + 4 3 (n ST (32) + n V T (11)), C 2 (SO(11) = 55) = T (55) = 9, T (32) = 4, T (11) = 1. n S, n V n S = 3, n V = 0. 36

SO(11) A M Ψ (a) 32 Ψ (b) 11 SO(11) 55 32 11 5D RS 1 5 4 4 Orbifold BC (, ) (, ) β 1st KK b KK = 7 2 9 + 4 3 (3 4 + 0 1) = 31 2. 37

SO(11) GHGUT Α 1 b KK 31 2 100 80 60 40 20 0 100 10 5 10 8 10 11 10 14 10 17 m KK 10 6 GeV Α 1 b KK 13 2 100 80 60 40 20 0 100 10 5 10 8 10 11 10 14 10 17 [8, N.Y. 16] 2 (n 32, n 11 ) = (3, 0), (5, 2), (5, 4) Μ m KK 10 6 GeV Α 1 b KK 1 2 100 80 60 40 20 0 100 10 5 10 8 10 11 10 14 10 17 (@ µ = M Z 91 GeV) Ref. [14, PDG 14] Μ m KK 10 6 GeV α 3C 0.118, α 2L = α em sin 2 θ W, α 1Y = 5α em 3 cos 2 θ W, α 1 em 128, sin 2 θ W 0.23. 38

SO(11) GHGUT Α 1 b KK 31 2 70.0 50.0 30.0 20.0 15.0 10.0 100 10 5 10 8 10 11 10 14 10 17 m KK 10,10,10 GeV Α 1 b KK 31 2, 13 6, 1 2 70.0 50.0 30.0 20.0 15.0 10.0 100 10 5 10 8 10 11 10 14 10 17 [8, N.Y. 16] 3 KK β Μ m KK 10 10 GeV (@ µ = M Z 91 GeV) Ref. [14, PDG 14] α 3C 0.118, α 2L = α em sin 2 θ W, α 1Y = 5α em 3 cos 2 θ W, α 1 em 128, sin 2 θ W 0.23. 39

4. Kaluza-Klein(KK) SO(11) KK ( ) [11, N.Y. 15] ( [8, N.Y. 16] ) 40

References [1] K. Agashe, R. Contino, and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B719 (2005) 165 187, arxiv:hep-ph/0412089 [hep-ph]. [2] Y. Hosotani, K. Oda, T. Ohnuma, and Y. Sakamura, Dynamical Electroweak Symmetry Breaking in SO(5) U(1) Gauge-Higgs Unification with Top and Bottom Quarks, Phys.Rev. D78 (2008) 096002, arxiv:0806.0480 [hep-ph]. [3] Y. Hosotani, S. Noda, and N. Uekusa, The Electroweak Gauge Couplings in SO(5) U(1) Gauge-Higgs Unification, Prog. Theor. Phys. 123 (2010) 757 790, arxiv:0912.1173 [hep-ph]. [4] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, LHC Signals of the SO(5) U(1) Gauge-Higgs Unification, Phys. Rev. D89 no. 9, (2014) 095019, arxiv:1404.2748 [hep-ph]. [5] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, Dark Matter in the SO(5) U(1) Gauge-Higgs Unification, PTEP 2014 (2014) 113B01, arxiv:1407.3574 [hep-ph]. 41

[6] S. Funatsu, H. Hatanaka, and Y. Hosotani, H Zγ in the Gauge-Higgs Unification, Phys. Rev. D92 (2015) 115003, arxiv:1510.06550 [hep-ph]. [7] Y. Hosotani and N. Yamatsu, Gauge-Higgs Grand Unification, Prog. Theor. Exp. Phys. 2015 (2015) 111B01, arxiv:1504.03817 [hep-ph]. [8] N. Yamatsu, Gauge Coupling Unification in Gauge-Higgs Grand Unification, Prog. Theor. Exp. Phys. 2016 (2016) 043B02, arxiv:1512.05559 [hep-ph]. [9] Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys.Lett. B126 (1983) 309. [10] Y. Hosotani and N. Yamatsu, Gauge-Higgs Grand Unification, PoS PLANCK2015 (2015) 058, arxiv:1511.01674 [hep-ph]. [11] N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, arxiv:1511.08771 [hep-ph]. [12] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 128. [13] W. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras. Marcel Dekker, Inc., New York, 1981. 42

[14] Particle Data Group Collaboration, K. A. Olive et al., Review of Particle Physics (RPP), Chin.Phys. C38 (2014) 090001. 43