物性物理学I_2.pptx

Similar documents
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2011de.dvi

meiji_resume_1.PDF

物性物理学I_2.pptx


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

30

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Gmech08.dvi

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Part () () Γ Part ,

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

A

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

gr09.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

高知工科大学電子 光システム工学科

液晶の物理1:連続体理論(弾性,粘性)

I ( ) 2019

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

i

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Microsoft Word - note02.doc

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

master.dvi

/Volumes/NO NAME/gakujututosho/chap1.tex i


30 (11/04 )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


Korteweg-de Vries

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

( ) ,

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

dynamics-solution2.dvi

プログラム

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Gmech08.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

構造と連続体の力学基礎

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

振動と波動

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

08-Note2-web

Chap11.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

KENZOU

pdf

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Note.tex 2008/09/19( )

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

/Volumes/NO NAME/gakujututosho/chap1.tex i



1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

chap1.dvi

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

多次元レーザー分光で探る凝縮分子系の超高速動力学

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


A


Microsoft PowerPoint _量子力学短大.pptx

QMII_10.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

( ) ( )


ଗȨɍɫȮĘർǻ 図 : a)3 次元自由粒子の波数空間におけるエネルギー固有値の分布の様子 b) マクロなサイズの系 L ) における W E) と ΩE) の対応 として与えられる 周期境界条件を満たす波数 kn は kn = πn, L n = 0, ±, ±, 7) となる 長さ L の有限

The Physics of Atmospheres CAPTER :

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Transcription:

phonon U r U = nαi U ( r nαi + u nαi ) = U ( r nαi ) + () nαi,β j := nαi β j U r nαi r β j > U r nαi r u nαiuβ j + β j β j u β j n α i () nαi,β juβj

調和振動子近似の復習 極 小 値近傍で Tylor展開すると U ( x) = U ( x ) + ( x x )U ( x ) + ( x x ) U ( x )! n ( x x ) U (n ) ( x ) + n! U ( x ) U ( x ) + ( x x ) U ( x )! + 極値近傍の振る舞い ( U ( x ) = ) 調和振動子型ポテンシャル U ( x) ポテンシャル中の質点の運動 E = x + U ( x ) + ( x x ) U ( x )! E = E U ( x ) d = ( x x ) + ( x x ) U ( x ) dt! U ( x ) = x x 原子の位置 変位ベクトル n ( N ) フックの法則=線形近似 他の原子からの寄与 n N rα F = U = ( x x )U ( x ) unα i un β i n N 個 rnα = t n + rα t n = n + n b + nc O n n + un β j n unα i n + u n β j n n() α i,β j n n + U := > rnα i rβ j

原子の運動方程式 dunα i () Mα + nα i,β juβ j = dt β j iq r iω t unα i = uα i ( q ) e + c.c. Mα 平面波解 n (格子点上) ω unα i F変換! ( NN 本) + Mα Mβ βj iq r iq rn () nα i,β je uβ j () n() α i,β j = α i,( n )β j 並進対称性! ω uα i + βj = (特性方程式)! 分散関係 iq r iq rn α()i,(n )β j e Mα Mβ Dα()i, β j= 動力学行列! Dα()i, β juβ j = ( ω = ω (q) N 本) ) 結合振動子モデルと周期性 N自由度の結合振動子 単原子種一次元格子 x = x + ( x x ) 連立の運動方程式 x = x N+ = (固定端条件) x = ( x x ) + ( x x ) x N = x N + ( x N x N ) 特性方程式 ω + ω + ω + x x x これらを行列表示して x x = xn から基準振動を解析する x xn xn xn+

x = x n ( x n n ) + ( x n+ x n ) (n ) x = x N+ = x n = Asin (qn ωt +θ) q q = λ ω sin (qn ωt +θ) = [ cos q ]sin (qn ωt +θ) ω = ( cosq ) = 4 sin q ω = sin q x x x x x N x N x N+ q x = x N+ = Asin iωt +θ ( ) = Asin{ iq(n +) iωt +θ} = sin( iωt +θ ) = sinq(n +)cos( iωt +θ ) + cos q(n +) sin( iωt +θ ) = sinq(n +)cos( iωt +θ ) = ( t) t sinq(n +) = q j = j j =,,, ( N +) ( ) N N x = Asin ( ωt +θ) =, x N+ = Asin ( n N + ωt +θ) = N + x i = Asin ( n i i ωt +θ) = Asin n N + N + cos( ωt +θ) = x i( ) x N+l( ) = Asin (n N + l N + l ωt +θ) = Asin n N + cos( ωt +θ)( ) n = ( ) n x l

ω = sin q q j = ( N +) j ( j =,,,, N, N +) q = ( N +) q = ( N +) = li n n N+ N N + dω dq = = d dq sin q = Hz, 8 c = ω ln D( ω ) D( ω ) q = ω = q = 4 /s D( ω ) = dq dω = = q cos c ( ) ω

固定端の場合の振動モードと定在波 包絡線 のイメージ q = q = ( N + ) q = ( N + ) q = ( N + ) N ( N + ) 隣どうしが逆位相で振動 自由端条件下の振動解 周期的境界条件 Floquet-Bloch解 xn = Aeiqn iω t q= を仮定 q は波数 ( λ ) ω x = e iq + eiq x 運動方程式に代入すると ω = ( cos q ) = 4 sin ω = q sin q 音響フォノンの 分散関係 周期(的)境界条件 x = x N より N N Aeiq iω t = AeiqN iω t q = ( N ) l l =, ±,, ±, x x x xn xn

N自由度の結合振動子 二原子種からなる無限一次元格子 運動方程式 ( = c (u v j uj (q) = Aq Floquet-Bloch解 j + u j + M i q j+ ω t 4 e ( + e 光学分枝! T! L! = N ( =, ±, ±, ±,...) N モード 光学モード 音響モード q! T! ω= ω un (q) Aq ω = + = Bq M M Aq ω = = Bq Forbidden gp! 音響分枝! M vn (q) ( + e iq ) ) q= M 4sin ( q ) ω = + ± + M M M フォノンの分散関係 + M A q = Bq v j (q) M ω iq i q j+ ω t 4 + Aq*e i q j+ ω t 4 + Bq*e uj (q) v j (q) 特性方程式 j M ω ( + e iq ) ( + eiq ) ω 特性行列 q= (M > ) i q j+ ω t 4 e vj (q) = Bq uj (q) ) v ) j = c v j + v j u j Mu For N tos in -D crystl! q (M + ) q= coustic odes (xt + L)! N- optic odes! (TO>LO, LA>TA in generl)!

M u j (q) v j (q) ω = sin q ω = M + ± M + 4sin ( q ) M M q = q = q = q = ω = sin q q = q = q = q =

= λ=? ゾーン端の振動モード = λ= + M / 光学分枝! M / / Forbidden gp! T! L! 音響分枝! q! = / T! (λ = ) q= q= = フォノンと光の結合 c ω= n 光の分散関係 光散乱振幅 光の分散関係 A (t ) = dr n(r ) exp( iδ r ) e iω t Δ 交点で相互作用 (結合)が発生 光学分枝 (λ = ) 散乱中心 n(r ) = n δ ( r r (t)) r (t) = r + u (t) ベクトル分解 音響分枝 iδ (r + u (t)) iω t A (t ) = A e ω= q (M + ) q= q= iδ r iδ u (t) iω t = A e e e

iδ r iω t = A e iδ u (t) e iδ r iω t iδ r = A e e ia Δ e u (t)e iω t (*) ( iq r iω ( q)t iq r +iω ( q)t u (t) = u ( q ) e +e M iδ r iω t (*) = A e e ia 弾性散乱項 n n i(δ q) r i(ω ±ω ( q))t Δ e e M 非弾性(Rn)散乱項 Δ q = G 散乱(位相整合)条件 ω = ω ± ω ( q) q = G 保存則との対応 光 ω = ω ± ω ( q) 光 フォノン 結晶? 光 光 フォノン 仮想準位! 格子振動 フォノン による分極率変調 ) P = ε χ() + χ() cosωt E cos ω t 弾性(Ryleigh)散乱項 = ε E χ() cos ω t + ε E χ() cos (ω Ω ) t Intensity (.u.) + ε E χ() cos Si-Ge Si-Si 54 545 Ω 基底状態! g Si-Si Ge-Ge ωs 振動励 起状態! 非弾性(Rn)散乱項 (ω + Ω) t Pup: 5 n 55 ω P ストークス光! 中間状態)! Rn散乱の古典論 ( ) 反ストークス光! 平面波解 SiGe (x=.64) lloy 55 555 Wvelength (n) 56 565

) 結晶の熱的性質 フォノンの状態密度 ω +d ω ω +d ω V V d q = dsω dq ( ) ω ( ) ω v = dω dsω dsω V V = dω = dω g dq v ( ) ω qω ( ) g 群速度 D (ω ) dω = 各モードのDOS 4 q V V ω Dα (ω ) dω = = dω dω c ( ) cα α ω qω = 全振動モードの和 dω = cl,t,t dq D (ω ) dω = D (ω ) dω α = V + ω dω cl ct Siのフォノンの分散曲線と状態密度 de d de d = = = = DOS $ dq ω (q) ω + dω

Intensity (rb. units) TO Si-Si TO Si-Ge TO Ge-Ge TA NP Si TO+O Γ e-h Si TO Si TO K Si TA 95 5 5 Photon energy (ev) $F.$A.$Johnson$Proc.$Phys.$Soc.$7,$65$(959$)$ E n = ω n + ( n =,, ) n P n = Aexp E n B T P n = n A n= e E n B T = Ae ω B T n= = Ae ω B T e nω B T e ω B T = P n = ( e ω T B )e nω B T

E = P n E n = ( e ω n B T )ω e nω T B n +/ n ( ) x n = n= x, nxn = n= x ( x) = ( e ω B T )ω n + E ω, T ( ) = ω e nω B T e ω / BT + n f BE = n = e ω / BT f MB = e E n B T U ( T ) = N A ω = N A B T C V = U T C V = R C V = R V = N A B CV/R.5..5. T/T

( ) = N A U T e ω / BT + ω C V = U T = R θ E T lic V = li T li T V = N A B C V = li T e θ E /T ω B T e ω / BT (e ω / BT ) (e θ E /T ) θ E = ω R θ E T T R θ E T B e θ E /T (e θ E /T ) = R exp θ E T C E = U ω V = N T A B V B T = R θ E T e θ E /T (e θ E /T ) ω e ω / BT (e ω / BT ) ω CV/R..5 C D = 9N T V B /T e z z 4 (e z ) dz. T/T h;p://hyperphysics.phyastr.gsu.edu/hbse/solids/phonon.htl

( ) = dωd( ω ) U T (q = ) ( ) E ω,t ω = cq C V = V c + L c T ω D ω T E( ω,t )dω ω D N A = V c + ω D L c T ω dω C V = 9N A ω D = 9N A ω D ω D T = 9N A B T B / e ω / BT ω dω e ω / BT ω (e ω / BT ) B T ω dω /T e z z 4 (e z ) dz = ω B # (K) # C Ge 7 Si 64 Au 65 Al 8 Fe 467 Cs 8 T 9N A B e z + z /T T (+ z)z dz 9N A B lic V = 9N A B T T T + 4 T e z z 4 (e z ) dz 5 4 T N A B 4 R T

T ω T = ω( T ) n = N A T D T = N A ω T = T c = B T ω D = D c = B T U = n B T = N A B T D C V = U T = n B T = N A B T T J = κ T κ = Cv λ κ : T t = κ ρc P T x ρ : C p : ΔT = T x l x = T x v xτ T ( x) x n v x x + l x n v x T ( x + Δx) ΔT J = cδt nv x nv x = cnv xτ T x = Cv xτ T x

J = C v x τ T x = C v τ T x = T T Cvl κ x x κ = Cvl l < : l κ = Cv (l > ) ω + ω = ω q + q = q q + q = q + G T q q q q exp T q, B q q G q + q = q q + q = q + G

Glssbrenner, C. J. nd G. A. Slc, Phys. Rev. 4, 4A (964) A58-A69. h;p://www.ioffe.ru/sva/nsm/seicond/si/therl.htl U(x) = U() +U () () x! +U() () x! +U(4) () x4 4! U () () =!c >, U () () =!g <, U (4) () = 4! f < x = xe U (x)/ BT dx e U (x)/ BT dx = xe βu (x) dx e βu (x) dx xe βu (x) dx (x + βgx 4 + β fx 5 )e βcx dx = 4 g c e βu (x) dx e βcx dx = / / β c x = g 4c β = g 4c B T 5/ β /

h;p://science4.co/pper/4579 Z = n= ( ) e ω B T n+ F T = U ( x) B T log Z = U ( x) + ω + BT ln( e ω BT ) F = B T log Z Od, Y. nd Y. Touru,! J. Appl. Phys. 56, (984) 4- F = F ( x ) + ( x x ) F x x=x U ( x) = U ( x ) + ( x x ) p = = F V ( x x ) = ω T ω x E( ω,t ) α = x dx dt = x α V = V dv dt = βv γ = lnω ( q, j) lnv lnω ln x q, j ( ) T E ω,t ( ) lnω ( q, j) lnv T E ω ( q, j),t β = V ( ) dp dv Si