( ) : (Technocolor)...

Similar documents
(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T


pptx

Kaluza-Klein(KK) SO(11) KK 1 2 1

SUSY DWs

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

main.dvi

TOP URL 1

中央大学セミナー.ppt

TeV b,c,τ KEK/ ) ICEPP

YITP50.dvi

3 exotica

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

TOP URL 1

CKY CKY CKY 4 Kerr CKY

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

main.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

Confinement dual Meissener effect dual Meissener effect

ssastro2016_shiromizu

余剰次元のモデルとLHC

LLG-R8.Nisus.pdf

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

,,..,. 1

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Muon g-2 vs LHC (and ILC) in Supersymmetric Models

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

“‡”�„³…u…›…b…N…z†[…‰

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

SO(2)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

arxiv: v1(astro-ph.co)

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

本文/目次(裏白)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

main.dvi

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

『共形場理論』


2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Einstein ( ) YITP

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

susy.dvi


2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

pptx

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

TOP URL 1


Mathematical Logic I 12 Contents I Zorn

N=1 N=1 QCD N=1 non-abelian QCD X 0

Part () () Γ Part ,


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

( )

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

素粒子物理学2 素粒子物理学序論B 2010年度講義第10回


TOP URL 1

橋本研

( ) ) AGD 2) 7) 1

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

kougiroku7_26.dvi

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

Introduction 2 / 43

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

量子力学 問題

Untitled

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

( ) I( ) TA: ( M2)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 2 2 (Dielecrics) Maxwell ( ) D H

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

プログラム

( ) ( )

Transcription:

( ) 2007.5.14 1 3 1.1............................. 3 1.2 :........... 5 1.3........................ 7 1.4................. 8 2 11 2.1 (Technocolor)................ 11 2.2............................. 12 2.3 =............... 13 3 14

4 = 18 4.1..................... 18 4.2.......................... 22 4.3 BPS........................... 25 5 ( ) 26 6 U(N C ), N F 29 7 1/2 BPS 31 8 Conclusion 36 2

1 1.1 GeV SU(3) SU(2) U(1): W ±, Z 1. ( ) 2. W ±, Z 0 (1983), 3. 1. W, Z 1983 CERN 3

2. 1974 SLAC, BNL 3. 1977 SLAC 4. 1977 FNAL 5. 1995 FNAL 3 Z 3 CP B Cabibbo LHC 1. 4

2. ( ) 3. 4. 1.2 : 1. 2. ( ) ( ) 1. + + + + 5

2. + Kamiokande, SuperKamiokande, Kamland, 1. ( ) 2. 3. 1. ( + + ) ( ) ( ) ( ) 2. 6

( ) ( ) 3. ( ) 4. 1.3 LHC=Large Hadron Collider 2007 CERN 7TeV 7TeV ( 7 ) : Atlas, CMS, LHCb, Allice, 7

: : 1.4 1. ( ) M GUT c 2 10 15 10 16 GeV (1.1) 2. 8

( ) M W c 2 10 2 GeV (1.2) M GUT c 2 10 15 GeV M 2 W /M 2 GUT 10 26 1 (1.3) V (r) = G N m 1 m 2 r (1.4) G N M P c 2 c c 2 = 1.22 10 19 GeV (1.5) G N ( ) ( ) M 2 W /M 2 P 10 34 1 (1.6) 9

M W = 1. 1/2 2. ( ) (, ) 10

2 2.1 (Technocolor) TeV 11

L. Susskind,Phys. Rev.D20 (1979) 2619; S. Weinberg, Phys. Rev.D19 (1979) 1277; D13 (1976) 974; S. Dimopoulos, and L. Susskind,Nucl. Phys. B155 (1979) 237; 2.2 ( ) 0 : m B m B = m F 1 2 : m F m F = 0 S.Dimopoulos, H.Georgi, Nucl.Phys.B193 (1981) 150; N.Sakai, Z.f.Phys.C11 (1981) 153; E.Witten, Nucl.Phys.B188 (1981) 513; 0 12

( ) (MSSM) MSSM 2.3 = 4 (4 + n) ( ) n 2πR 1 M 1 M 2 V 4+n (r) = (M (4+n) ) 2+n r 1 M 1 M 2, for r R 1+n (M (4+n) ) 2+n R n r M 2 P = (M (n+4)) 2+n R 1 R n ( c ) n M (4+n) M P 10 19 GeV P.Horava and E.Witten, Nucl.Phys.B475, 94 (1996); N.Arkani-Hamed, SDimopoulos, G.Dvali, Phys.Lett.B429 (1998) 263 ; I.Antoniadis, N.Arkani-Hamed, S.Dimopoulos, G.Dvali, 13

3 Phys.Lett.B436 (1998) 257; Randall, Sundrum, Phys.Rev.Lett.83 (1999) 3370; 4690; 1. H 1, H 2 ( ) (a) 4 3 = 1 ( 2 H 3 W ±, Z ) h (b) 8 3 = 5 (H 1, H 2 3 W ±, Z ) (h, H, A) (H +, H ) 2. Lightest Supersymmetric Particle R R R 14

LSP 3. fine tuning (a) (b) 4. 15

1 U(1), SU(2), SU(3) α i = gi 2 /4π, (i = 1, 2, 3) 1: ( ) ( ) α i = gi 2 /4π, (i = 1, 2, 3) U(1), SU(2), SU(3) http://pdg.lbl.gov/2005/reviews/gutsrpp.pdf 16

5. 150GeV 4 m h m Z K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 67 (1982) 1889. 150GeV Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1; H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815; J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. 17 Lett. B257 (1991) 83.

: (sequestering) 4 = 4.1 N.Arkani-Hamed, SDimopoulos, G.Dvali, Phys.Lett.B429 (1998) 263 ; Kehagias,Sfetsos, Phys.Lett.B472 (2000) 39; 4 M c V (4) (r) G N M 1 (4.1) r c 1.61 c 10 33 cm, 1.22 10 19 GeV/c 2. (4.2) G N GN r 200µm (4.3) 18

4 V (4) (r) = G N M 1 r = M c 1 (M (4) ) 2 r. (4.4) 4 + n V (4+n) (r) = G 4+n M 1 (4.5) r n+1 4 + n n R V (4+n) (r) G 4+n M 1 m 1,,m n [r 2 + n i=1 (2πR (4.6) im i ) 2 ] 1+n 2 M (4+n) ( ) 1 n G n+4 = (M (4+n) ) 2+n c (4.7) c 4 + n ( ) V (4+n) 1 n (r) M (M (4+n) ) 2+n r 1+n c, r R i. (4.8) c 19

1 V (4+n) (r) M (M (4+n) ) 2+n = M 1 1 (M (4+n) ) 2+n R 1 R n r n vol(s n ) ( d n 1 m [r 2 + n i=1 (2πR c im i ) 2 ] 1+n 2 c vol(s n ( ) ) n c G N M 1 2 c r 1+n 2π 2 vol(s n ) = Γ( 1+n 2 ) (4.9) 4 G N = G 4+nvol(S n ) 2Π n i=1 (2πR i) G 4+n R 1 R n (4.10) M 2 P = (M (n+4)) 2+n R 1 R n ( c ) n (4.11) ) n 20

:, m e mr G 4+n M (4+n) TeV ( ) 2 (n 2) D = 6 TeV 21

4 TeV LHC 4.2 Randall, Sundrum, Phys.Rev.Lett.83 (1999) 3370; 4690; y 2πr c : y = y + 2πr c : y y ( ) y = πr c = ( ) (1 + d, d = 4) S = S bulk + S brane (4.12) S bulk = 1 d d+1 x G [ 12 ] κ R Λ (4.13) 2 d+1 22

S brane = 1 κ 2 d+1 d d+1 x G [ V 1 δ(y) V 2 δ(y πr c )] (4.14) R MN 1 2 G MNR = ΛG MN + g mn δ m M δn N [V 1δ(y) + V 2 δ(y πr c )] : (Warped metric) Randall-Sundrum ds 2 = e 2k y η µν dx µ dx ν + (dy) 2 (4.15) 2Λ 3Λ k = 6, V 1 = V 2 = (4.16) 2 5 4 ( ) Randall-Sundrum 1. y = 0 y = πr c 23

2. y = 0 3. y = 0 1/r 4. 5. Randall-Sundrum 1. 2. 3. ( ) 24

4.3 BPS = :,,... ( ) Landau-Ginzburg : U(1) φ L = 1 4e 2F µνf µν + D µ φ(d µ φ) λ ( φφ v 2) 2 (4.17) 4 : ( ) k = 1 d 2 x F 12 (4.18) 2π : = U(1) :, : λ < e 2 : (, ) 25

λ > e 2 : λ = e 2 : BPS BPS (SUSY) 5 ( ) ( ) : ( ) π 0 (M) 26

φ (λ > 0) L = µ φ µ φ λ(φ 2 v 2 ) 2 (5.1) : φ + v, φ v y = x 2 E = ( y φ) 2 + λ(φ 2 v 2 ) 2 = ( y φ + λ(φ 2 v 2 )) 2 + y [2 )] λ (v 2 φ φ3 3 [ dye 2 )] λ (v 2 φ φ3 3 Bogomol nyi-prasad-sommerfield (BPS) (5.2) Bogomol nyi, Sov.J.Nucl.Phys. 24 (1976) 449; Prasad and Sommerfield, Phys.Rev.Lett. 35 (1975) 760. BPS y φ + λ(φ 2 v 2 ) = 0 (5.3) 27

: φ = v tanh( λvy) (5.4) (a) BPS (b) dφ cl λv 2 dy = ( ) cosh 2 λvy References 28

y: 6 U(N C ), N F L = 1 2g 2Tr(F MN(W )F MN (W )) + 1 g 2Tr(DM ΣD M Σ) +Tr [ D M H(D M H) ] V (6.1) V = g2 [ (HH 4 Tr ) 2 ] c1 NC + Tr [ (ΣH HM)(ΣH HM) ] D M H i = ( M + iw M )H i, D M Σ = M Σ + i[w M, Σ] F MN (W ) = M W N N W M + i[w M, W N ] W M, Σ (N C N C ) U(N C ) g 29

: H ra H ra (N C N F matrix) (i = 1, 2 ; r = 1,, N C ; A = 1,, N F ), (M) A B m A δ A B : m A > m A+1 : U(1) N F 1 F : Σ 5 M, N, = 0, 1, 2, 3, 4 (8 SUSY) : A 1 A 2 A NC HH = c1 NC, ΣH HM = 0 (6.2) H ra = c δ A r A, Σ = diag(m A1,, m ANC ) (6.3) N : F! (N F N C )!N C! en F log(x x (1 x) (1 x)), x N C /N F : ( ),,, 30

2: A 1 A 2 A NC B 1 B 2 B NC. 7 1/2 BPS 1/2 BPS y x 4, 4 D W M y = 0 31

E [ E = Tr D y H ra 2] + Tr [ ΣH HM 2] + 1 ( g 2Tr (D y Σ) 2) + g2 [ (HH 4 Tr ) 2 ] c1 NC = Tr D y H + ΣH HM 2 + 1 ( g 2Tr D y Σ g2 ( c1nc HH )) 2 + c y TrΣ (7.1) 2 1/2 BPS : γ 4 ε i = i(σ 3 ) i jε j D y H = ΣH + HM, D y Σ = g 2 ( c1 NC HH ) /2 (7.2) labeled by A 1 A 2 A NC B 1 B 2 B NC BPS + [ ] + Edy c Tr(Σ) = c BPS N C m Ak k=1 N C k=1 m Bk (7.3) 32

Σ + iw y S 1 (y) y S(y) S(y) GL(N C, C) BPS : H(y) = S 1 (y)h 0 e My H 0 N C N F BPS : Ω SS ( y Ω 1 y Ω ) = g 2 c ( ) 1 C Ω 1 Ω 0, Ω0 c 1 H 0 e 2My H 0 H 0 Ω(y) S(y) Σ, W y, H 1 y = ±, U(1) H 0 V - : (S NC 2 ) (S, H 0 ) (S, H 0 ) H = S 1 H 0 e My (Σ, W y ) S S = V S, H 0 H 0 = V H 0, V GL(N C, C) 33

3: A B C ( ) A,B ( ) BPS : M = {H 0 H 0 V H 0, V GL(N C, C)} G NF,N C SU(N F ) SU(N C ) SU(N F N C ) U(1) ( ) N C Ñ C N C (N F N C ) : 1,, N C Ñ C + 1,, N F (7.4) dim R M 1,,N C Ñ C +1,,N F N F,N C = 2N wall = 2N C Ñ C (7.5) M = M 1/1 + M 1/2 = M 0 M 1 M N CÑC (7.6) 34

H 0 : 1 0.8 0.6 0.4 0.2-40 -20 20 40 y 4:. U(1) : H 0 = (e r 1, e r 2,, e r N F ), H = S 1 H 0 e My = S 1 (e r 1+m 1 y,, e r N F +m NF y ) (7.7) i i + 1 Rer i + m i y Rer i+1 + m i+1 y Im(r i r i+1 ) : U(N C ) : Ñ C N F N C BPS (T w : ) L = T w + d 4 θk(φ, φ ) + (7.8) 35

K(φ, φ ) = dy [ c log detω + ctr ( Ω 0 Ω 1) + 1 ( 2g 2Tr Ω 1 y Ω ) ] 2 K (g ) : g 2 c/ m 1: Ω = Ω 0 c 1 H 0 e 2My H 0 (7.9) g 2 : (NLSM) 8 Conclusion 1. 2. 3. 4. 5. Ω=Ω sol 36

6. 7. ( ) TeV 8. 9. ( )U(N C ) N F BPS 10. ( ) H 0 M NF,N C {H 0 H 0 V H 0, V GL(N C, C)} SU(N F ) G NF,N C SU(N C ) SU(Ñ C ) U(1) (8.1) 11. (g 2 ) ( ) 12. BPS 37

References of Solitons in 8 SUSY Theories Tokyo Tech Collaboration 1. Review Solitons in the Higgs Phase: Moduli matrix approach, hep-th/0602170, J. Phys. A 39 (2006) R315-392, 2. Domain Walls in 5D Supersymmetric Theories Moduli space of BPS walls in supersymmetric gauge theories, hep-th/0503136, Com. Math. Phys. Global structure of moduli space for BPS walls, hep-th/0503033, Phys.Rev.D71 (2005) 105009, D-brane Construction for Non-Abelian Walls, hep-th/0412024, Phys.Rev.D71, 125006 (2005), Non-Abelian Walls in Supersymmetric Gauge Theories, hep-th/0405194, Phys.Rev.D70 (2004) 125014, Construction of Non-Abelian Walls and Their Complete Moduli Space, hep-th/0404198, Phys.Rev.Lett.93 (2004) 161601, Exact Wall Solutions in 5-Dimensional SUSY QED, hep-th/0310189, JHEP 11 (2003) 060, 38

Massless Localized Vector Field on a Wall in Five Dimensions, hep-th/0310130, JHEP 11 (2003) 061, Vacua of Massive Hyper-Kähler Sigma Models with Non-Abelian Quotient, hep-th/0307274, Prog. Theor. Phys. 113 (2005) 657, Manifest Supersymmetry for BPS walls in N = 2 nonlinear sigma models,, hep-th/0211103, Nucl.Phys.B652 (2003) 35-71, BPS Wall in N = 2 SUSY Nonlinear Sigma Model with Eguchi-Hanson Manifold, hep-th/0302028, in Garden of Quanta - In honor of Hiroshi Ezawa, pages 299 325, 3. Vortex Non-Abelian Vortices on Cylinder Duality between vortices and walls, hep-th/0601181, Phys.Rev.D73 (2006) 085008, Moduli Space of Non-Abelian Vortices, hep-th/0511088, Phys.Rev.Lett.96 (2006) 161601, Effective Theory on Non-Abelian Vortices in Six Dimensions, hep-th/0405161, Nucl.Phys.B701, 247 (2004), 4. 1/4 BPS states Effective Action of Domain Wall Networks, hep-th/0612003, Phys.Rev.D75 (2007) 045010, Non-Abelian Webs of Walls, hep-th/0508241, Phys.Lett. B632 (2006) 384-392, 39

Webs of Domain Walls in Supersymmetric Gauge Theories, hep-th/0506135, Phys.Rev.D72 (2005) 085004, Monopoles, Vortices, Domain Walls and D-branes: The rules of Interaction, hep-th/0501207, JHEP 03 (2005) 019, Instantons in the Higgs Phase, hep-th/0412048, Phys. Rev. D72, 025011 (2005), All Exact Solutions of a 1/4 Bogomol nyi-prasad-sommerfield Equation, hep-th/0405129, Phys.Rev.D71, 065018 (2005), Domain Wall Junction in N = 2 Supersymmetric QED in four dimensions, hep-th/0306077, Phys.Rev.D68 (2003) 065005-1-16, BPS Lumps and Their Intersections in N = 2 SUSY Nonlinear Sigma Models, hep-th/0108133, Grav.Cosmol.8 (2002) 129-137, 5. Non-BPS Walls and Supersymmetry Breaking Non-BPS Walls and their stability in 5D Supersymmetric Theory, hep-th/0404114, Nucl.Phys.B696 (2004) 3-35, 6. Effective Lagrangian Manifestly Supersymmetric Effective Lagrangians on BPS Solitons, hep-th/0602289, Phys.Rev.D73 (2006) 125008, 7. Wall Solution in Supergravity Bogomol nyi-prasad-sommerfield Multiwalls in Five-Dimensional Supergravity, 40

hep-th/0306196, Phys.Rev.D69 (2004) 025007, Wall solution with weak gravity limit in five-dimensional Supergravity, hep-th/0212175, Phys.Lett.B556 (2003) 192-202, Solitons in 8 SUSY Theories 1. Early works M. Cvetic, F. Quevedo and S. J. Rey, Phys.Rev.Lett.67, 1836 (1991) E. Abraham and P. K. Townsend, Phys.Lett.B 291, 85 (1992) M. Cvetic, S. Griffies and S. J. Rey, Nucl.Phys.B 381, 301 (1992) M. Cvetic, S. Griffies and H. H. Soleng, Phys.Rev.D 48, 2613 (1993) G. Dvali and M. Shifman, Phys.Lett.B396, 64 (1997) 2. Wall Solution in 8 SUSY Models J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys.Rev.D63, 085001 (2001); J. P. Gauntlett, R. Portugues, D. Tong, P. K. Townsend, Phys.Rev.D63, 085002 (2001); J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys.Rev.D64, 025010 (2001) R. Portugues, P. K. Townsend, JHEP 0204 039, (2002) D. Tong, Phys.Rev.D66, 025013 (2002) The Moduli Space of BPS Domain Walls 41

M. Shifman and A. Yung, Phys.Rev.D67, 125007 (2003) D. Tong, JHEP 0304, 031 (2003) Mirror Mirror on the Wall M. Arai, E. Ivanov and J. Niederle, Nucl.Phys.B680, 23 (2004) M. Shifman and A. Yung, Phys.Rev.D70, 025013 (2004) 3. Monopoles in Higgs Phase D. Tong, Phys.Rev.D69, 065003 (2004) R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nucl.Phys.B673, 187 (2003) R. Auzzi, S. Bolognesi, J. Evslin and K. Konishi, Nucl.Phys.B 686, 119 (2004) M. Shifman and A. Yung, Phys.Rev.D 70, 045004 (2004) R. Auzzi, M. Shifman and A. Yung, JHEP 0502 (2005) 046 4. Vortex A. Hanany and D. Tong, JHEP 0307, 037 (2003) R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nucl.Phys.B 673, 187 (2003) M. Shifman and A. Yung, Phys.Rev.D 70, 045004 (2004) A. Hanany and D. Tong, JHEP 0404, 066 (2004) A. Hanany and D. Tong, arxiv:hep-th/0507140; M. A. C. Kneipp and P. Brockill, Phys.Rev.D 64, 125012 (2001) 42

M. A. C. Kneipp, Phys.Rev.D 68, 045009 (2003) ; Phys.Rev.D 69, 045007 (2004) 5. Brane construction R. Auzzi, S. Bolognesi and J. Evslin, JHEP 0502 (2005) 046. 6. Index theorem K. S. M. Lee, Phys.Rev.D 67, 045009 (2003) introduction 43