X線-m.dvi

Similar documents
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

70 : 20 : A B (20 ) (30 ) 50 1

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

O E ( ) A a A A(a) O ( ) (1) O O () 467

入試の軌跡

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

熊本県数学問題正解

ssp2_fixed.dvi

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

( )

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

高等学校学習指導要領解説 数学編

Report10.dvi

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

di-problem.dvi

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :


The Physics of Atmospheres CAPTER :

[ ] Table

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

高校生の就職への数学II

Chap10.dvi

4STEP 数学 B( 新課程 ) を解いてみた 平面上のベクトル 6 ベクトルと図形 59 A 2 B 2 = AB 2 - AA æ 1 2 ö = AB1 + AC1 - ç AA1 + AB1 3 3 è 3 3 ø 1

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

2000年度『数学展望 I』講義録

数学Ⅲ立体アプローチ.pdf

総研大恒星進化概要.dvi

function2.pdf


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


all.dvi

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

meiji_resume_1.PDF

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


untitled

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

Note.tex 2008/09/19( )



さくらの個別指導 ( さくら教育研究所 ) A AB A B A B A AB AB AB B

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

MAIN.dvi

untitled

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

案内(最終2).indd

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

untitled

TOP URL 1

Part () () Γ Part ,

SO(2)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

( )


数学Ⅱ演習(足助・09夏)

0406_total.pdf

all.dvi

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37


a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

Nobelman 絵文字一覧

II Time-stamp: <05/09/30 17:14:06 waki> ii

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

数学の基礎訓練I

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

31 33

卓球の試合への興味度に関する確率論的分析

SIRIUS_CS3*.indd

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

液晶の物理1:連続体理論(弾性,粘性)

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

Transcription:

X Λ 1 X 1 O Y Z X Z ν X O r Y ' P I('; r) =I e 4 m c 4 1 r sin ' (1.1) I X 1sec 1cm e = 4:8 1 1 e.s.u. m = :1 1 8 g c =3: 1 1 cm/sec X sin '! 1 ß Z ß Z sin 'd! = 1 ß ß 1 sin χ cos! d! = 1+cos χ (1.) e 4 1 1 + cos χ I e = I (1.3) m c 4 r 1 χ (1+cos χ)= X e 4 =m c 4 = 7: 1 4 cm 1: X : X X Z X +Ze Z X (1.3) X 1 p I e Z Z p I e Z I e Λ 1

Z ρ eu(ρ) X 1.5νA X χ X Φ(s) = p I e Z 1 4ßρ sin sρ u(ρ) sρ dρ s = 4ß sin χ (.1) Z 1 f(s) = 4ßρ sin sρ u(ρ) dρ (.) sρ X (.1) I a = I e (s)f (s) (.3) 3 f(s) f(s) u(ρ) (atomic structure factor or Atomformfactor) p I e 1 f(s) 3: f(s) (atomic scttering factor ) s ( ) s = Z 1 f() = 4ßρ u(ρ)dρ = Z (.4) s 6= 3 f(s) <Z 3 X Bragg 3 (hk`) 1 spacing d 4 E,E 1,E,E 3 X p I e f X d X 4 E E 1 =N 1 O 1 +O 1 M 1 =N 1 O 1 =d sin (3.1) E p p

d sin = n n =; ±1; ±;::: (3.) χ = (3.3) Bragg X 1 X (3.) Bragg n Bragg Bragg X n 4: 4 X χ = (4.3) (ο; ; ) (x5 ) (4.1) (4.) i) ii) iii) a,b,c L,M,N I(ο; ; ) =I e jf (ο; ; )j G 1 (ο)g ( )G 3 ( ) s ß = sin = 1 d = s ο >= >; ψ a sin fi + b + c sin fi (4.1) I e = I e 4 m c 4 1 r 5: 1+cos χ! (4.) ο cos fi ( ) (4.3) ac sin fi G 1 (ο) = sin ßLο sin ßο ; G ( ) = sin ßM sin ß ; G 3( ) = sin ßL Laue( ) (4.4) sin ß jf (ο; ; )j = 8 < nx : j=1 f j cos ß(οx j + y j + z j ) = ; + 8 < nx : j=1 f j sin ß(οx j + y j + z j ) = ; (4.5) (x j ;y j ;z j ) 5 j R OP = X j = ax j ; PQ = Y j = by j ; QR = Z j = cz j (4.6) 3

! OR a; b; c (X j ;Y j ;Z j ) x17 Laue ο = h; = k; = `; G 1 (h)g (k)g 3 (`) =L M L (4.7) (4.7) Bragg (3.) X I e jf (h; k; `)j F (h; k; `) ( )(structure factor) 5 ο; ; ο; ; 3 a; b; c a (s s )=ο ; b (s s )= ; c (s s )= (5.1) s; s s s (5.) 6 a O P 1 s s (5.1) 1 a(cos ff 1 cos! 1 )=ON 1 P 1 M 1 = a = ο (5.3) (5.1) 3 ο a a ; b; c b; c 6: a ο = h( ); = k( ); = `( ) (5.4) a (s s )=h ; b (s s )=k ; c (s s )=` (5.5) 3 (5.5) s X (4.7) (3.) (5.5) Laue h; k; ` Laue 6 a s O OP 1 4

ff 1 b; c 3 X h; k; ` X 6 1 Slide 1 y P-1 P- 1 Slide z P-3 P-4 1 1 1 1 1 1 1 Slide 1 a >= >; >= >; (6.1) (6.) (4:4) M = N =1 G 1 (ο) = sin ßLο sin ßο G ( ) =1 G 3 ( ) =1 (6.3) (4:5) j =1 x 1 = y 1 = z 1 = jf (ο; ; )j = f (6.4) (4:)! I(ο; ; ) =I e f sin ßLο sin ßο! B sin ßLο sin ßο (6.5) (5:3)! a(cos ff 1 cos! 1 )=ο (6.6) (6.5) I e f X χ 3 Slide B (χ) =4 ρ J1 ff ((ß= )R" sin χ (6.7) (ß= )R" sin χ R " J 1 7: 7 3 7 R" sin χ =:61; 1:1; 1:6;::: B (χ) = (6.8) y P-1 3mm 1/3 P- P-1 z P-3.1mm, P-4 P-3 5

Slide (6.6)! 1 = a cos ff 1 = h h 6 h =; ±1; ±;::: 8 8: 1 8-() h = h 6= 8-(3) (6:6)! 1 = ff 1 = χ a" sin χ = h (6.) L h A h χ (6.) A h = L tan χ ο = Lχ ο = L h a" (6.1) (6.) (6.1) (6.6) 1 ( 1 (reciprocal lattice)) 7 1 1 (6.6) 1 cos ff 1 = 1 cos! 1 + h a (7.1) OP 1 O 6 OP 1 O h=a Q h OP 1 E a h O O 1= A A 1= A A E a h A AC h C h C h A A ff 1 6

AC h? E a h; OP 1? E a h; AC h k OP 1 ; 6 C h AO=6 P 1 OS =! 1 (7.) A =1= (7.3) S C h Q h : 1 cos ff 1 =AC h =AS cos! 1 =(AO+OS )cos! 1 1 = + OQ h! 1 = 1 cos! 1 cos cos! 1 + h (7.4) a ff 1 = ff 1 (7.5) " # O A ; (7.6) E a h a( a ) h A X X 6 4 (I) (II) (III) (IV) (V) a E a h X A E a h A A A O X X 3 7 5 (7.7) X 3 ( ) (I) E a h 1 a (II) A (Ewald's sphere of reflection) (IV) A O A X (III) E a h C h A A (Ausbreitungspunkt) 7

8 1 a b 1 a E a h b Eb h 1 a; b a b fl a 1 a ON 1 =1=a E a Ea 1 Ea ::: b b ON =1=b E b Eb 1 Eb ::: (5.5) Laue E a h E b k 1 O,P 1,P ;:::, Q,Q 1,Q ;:::, R,R 1,R ;::: OP 1 = ON 1 sin fl = 1 a sin fl ; OQ = ON sin fl = 1 b sin fl 6 P 1 OQ = ß fl (8.1) 1: a Λ =! OP 1 b Λ =! OQ (8.) 1 a Λ b Λ (8.1) ja Λ j jb Λ j = b a 6 d a Λ b Λ = ß fl (8.3) 6 4 11: 3 7 5 (8.4) 11 A ( ) O ( ) 11 8

" A # (8.5) E a h Eb k h; k Slide 3 x P-5 P-6 P-5 1.5 P-6 P-5 /3 Slide 3 P-7 P-6 P-6 P-7 P-6 Slide 3 3 1 ) (8.6) 3 6 4 3 a; b; c a b 3 c 1 6 3 3 7 5 (8.7) 3 a; b; c 3 E a h,eb k,ec` 3 H 1 H E a h Ea h ON 1! OH = h ON 1 = h=a a=a! ON 1 (h a=a) (h a) =h (.1) H E b k Ec` (h a) =h (h b) =k (h c) =` (.) (h k`) 1: 3 x P-5.1mm,.1mm P-6 P-5 P-5 1.5,P-7 P-6

h; k; ` (h k`) 13 E E a; b; c P,Q,R! OP = a h! OQ = b k! OR = c` (.3) O E ON ON= d! ON n n a n b n h = k = c` = d (.4) a n b n c n d d d = h; = k; = ` (.5) (:5) (:) h = n d (.6) 13: " O H(h k`) h hk` (hk`) # (.7) 6 4 (hk`) 7 5 (.8) 3 3 a; b; c R p = pa + qb + rc; p; q; r ; ±1; ±;::: (.) h h = ha Λ + kb Λ + `c Λ (.1) a Λ ; b Λ ; c Λ h a; b; c (.) (h a) =h = h(a a)+k(a b) +`(a c) (h b) =k = h(b a) +k(b b)+`(b c) (h c) =` = h(c a) +k(c b) +`(c c) h; k; ` a Λ >= >; (.11) (a a) =1; (a b) =(a c) = (.1) 1

a Λ? b; a Λ? c; a Λ = x[b c] (.13) (a [b c]) = v( ) xv =1 a Λ [b c] = b Λ [c a] = c Λ [a b] = (.14) v v v a; b; c a Λ ; b Λ ; c Λ 3 h a Λ ; b Λ ; c Λ (.1) 1 Bragg 3 11 14 O H 11! AH O! OS Laue (5.5) X 6 4 3 A 7 5 (1.1) 14: (5.5) (.) s s = h k k = h k = s ; k = s (1.) 14 k =! AH; k =! OA; h =! OH (1.3) 3 4OAH (.6) (.7) H (hk`) OH E 14 (hk`) E! OS! ) OS (1.4) E k BH; 6 B=χ= = 11

4OBH OB sin =OH; OB = ; OH = 1 d sin = (1.5) d Bragg (3.) Bragg n Laue h; k; ` 14 X AO (hk`) E! OS X (hk`) X! AH! OS X 6 4 (I) (II) (III) (IV) X X X X 3 7 5 (1.6) (7.7) 5 (7.7) (III),(IV) (1.6) (III) (Ewald's construction) 6 4 [ ] 14 OH Brillouin zone boundary (1:) k k = h k k A 5 (1.7) Brillouin zone boundary ο = h; = k; = ` ο; ; (5.5) Laue (5.1) X (4.) 6 4 (ο ) (4:) I(ο ) A X diffuse pattern 3 7 5 3 7 (1.8) 11 (Extinction Law) Laue (5.5) X (4.) Laue (4.4) ο = h; = k; = ` G 1 (h)g (k)g 3 (`) =L M N (11.1) 1

(hk`) χ Laue Laue X X (4.) I e r χ I e (4.5) jf (hk`)j = 8 < : nx j=1 f j cos ß(hx j + ky j + `z j ) = ; + 8 < nx : j=1 f j sin ß(hx j + ky j + `z j ) n Slide = ; (11.) Slide 4 P-8 P- ( 1 1 ) 1 P- P-8 1 (11.) jf (hk)j = f jf S (hk)j ; jf S (hk)j = f X j cos ß(hx j +ky j )g +f X j sin ß(hx j +ky j )g (11.3) Slide (6.5),(6.7) I e f! B(χ) P () 1 jf S (hk)j =1 (11.4) P- ( 1 1 ) jf S (hk)j = f1 +( 1) h+k g += ( 4 h + k h + k (11.5) P-8 P- h; k; ` Laue X X (1) () h + k P- (3) h + k + ` (4) h; k; ` (x j ;y j ;z j ) (x j + 1;y j + 1;z j + 1 ) f j f j [cos ß(hx j + ky j + `z j )+cosßfh(x j + 1 )+k(y j + 1 )+`(z j + 1 )g = f j cos ß(hx j + ky j + `z j )f1 +( 1) h+k+`g f j [sin ß(hx j + ky j + `z j )+sinßfh(x j + 1 )+k(y j + 1 )+`(z j + 1 )g = f j cos ß(hx j + ky j + `z j )f1 +( 1) h+k+`g P-8 P- >= >; (11.6) 13

(11.) f1 +( 1) h+k+`g X jf (hk`)j = f1+( 1) h+k+`g n= [f j=1 X n= cos ß(hx j +ky j +`z j )g +f j=1 sin ß(hx j +ky j +`z j )g ] (11.7) h + k + ` f1 +( 1) h+k+`g (International Table ) Slite 5 k P-1 () 1 jf S (hk)j =1 P-11 () ( 1; 1 ) 3 jf S (hk)j = f1+( 1) k cos h1 g +f+( 1) k sin h1 g =f1+( 1) k cos h1 g P-1 () ( 1; 1 ) ( ; 1 ) 3 3 3 jf S (hk)j = f1 +( 1) k [cos h1 +cos h4 ]g + fsin h1 +sin h4 g (11.8) = f1 +( 1) k cos h1 g (11.) (11.8) (11.) 1 15 P-1 P-11 P1 1 (11.8) (11.) k n h 3n 3n ± 1 k n h 3n 3n ± 1 4 1 3 1 4 15: (1) (11.8) () (11.) 4 (11.1) 1 X X i) ii) iii) (1.1) >= >; k P-1 P-11 P-1 3 14

13 Debye-Scherrer (1.1) ii) X 16 (hk`) O 1=d A N 1 N (hk`) X N 1 N A χ = 16: Debyr-Scherrer A O O L O O' r r = L tan (13.1) Debye-Scherrer Bragg d sin = ((3:) n d=n d ) (13.) d (h; k; ` n (hk`) d Bragg (13.1) r O' 14 (1.1) ii) X Debye Debye 17 1=d Y b Y ' ρ vcb B B b 15

(hk`) Y X 18 N 1 N N1 dn X P1 dp 8 >< >: cos(' ρ) cos ffi 1 = cos cos ffi = cos(' + ρ) cos (14.1) 17: 18: ( h; μ k; μ μ` 4 15 b b Y ' ' Y ' = Y b b X (hk`) Y X (1.1) i) Debye (14.1) ' = cos ffi 1 =cosffi = cos ρ (15.1) cos 1: 4 1 b E b k a Ea h Q R,Q 1 R 1,Q R ( 11 ) c Ec` E b k 16

N! AN! OP X X b E b k A 7 (5.3) (5.5) b! = o b cos ff = b sin fi k = k (15.) P A A O O 1 P (x; y) cos ffi = sin fi k = y p x + y ; sin = p x + y y p =sin cos ffi L + x + y p L + x + y ; cos ψ = L p L + x >= >; (15.3) E b k (Layer line) k = O' (equator) k 6= k = ±1; ±; ::: k b [p; q; r] I I (5.5) I = I cos ff = I sin fi = m (15.4) I = I s = I (s s )=(pa + qb + rc) (s s )=(ph + qk + r`) (15.5) (15.4) Polanyi I (15.) ph + qk + r` = m (15.6) p =; q =1; r = m = k (15.7) Slide 6 ΛΛ P-13 P-14 ±15 P-15 P-13 P-14 ±15 P-16 5 (15.8) 16 X 1»» X ΛΛ P-13 P-14 P-15 17

1= 1 1= A 1,A (1.1) iii) H O A AH=AO X : 17 (4.4) G 1 (ο) = sin ßLο= sin ßο L 1 (L ) L Slide 7 P-16 P-1 L = 1; ; 4; 8 1: 6 yy (17.1) 18 (1) a a 1=a E a h () (a; b) a E a h b Eb k (3) a; b; c E a h,eb k,ec` 1 H(hk`) h (hk`) d yy Slide 7 1 1,,4 4,8 8 18

(4) (5) (6) (7) (8) A (1.1) X Y E e ßiνt ff Y mff = ee e ßiνt ff(t) = (e=m)e e ßiνt (A.1) 1 O ff(t) ( ) O r,y ' P r=c! OP Y! OP E E(t + r c )= e c r ff(t) sin ' = E e 1 sin mc 'eßiνt (A.) r retarded potential (c=4ß)jej I('; r; t + r c )= c 4ß je(t + r c )j =( c 4ß E ) e4 1 m c 4 e 4 1 r sin ' = I m c 4 r sin ' (1:1) (1.) 3 ABC AB AC d BC; d CA; d AB ff; fi; fl cos = cos ff cos fi cos fl ; = cos ff =cosficos fl (A.3) sin fi sin fl = ; ff = '; fi = χ; fl =! cos ' =sinχ cos! (A.4) : Z 1 ß Z sin 'd! = 1 ß ß ß (1 sin χ cos!)d! = 1 ß (ß sin χ ß )=1+cos χ 1

(.1) 6 a s s( ) O P 1 s =ON 1 M 1 P 1 = a s a s = a (s s ) (A.5) s s 3 s s s s y O s A OA=OB=1 OACB js s j = OC = OM =sin(χ=) OC? y (A.6) ) 3: 4:! OC z y z x 4 O! OP = ρ u(ρ) ρ (ρ; ; ') p Z 1 Z ß Z ß Ψ(s s ) = I e u(ρ ') expfßi (ρ s s ) gρ sin d'd dρ p Z 1 Z ß Z ß = I e u(ρ ') expf ßi (ρ sin χ cos )gρ sin d'd dρ p Z 1 Z ß Z ß = I e u(ρ ') exp(iρs cos )ρ sin d'd dρ u(ρ ') u ρ u(ρ) ' p Z 1 Z ß Ψ(s s ) = I e ρ u(ρ) ß sin exp(iρs cos )d dρ p Z 1 " # e iρs cos ß p Z 1 = I e ßρ u(ρ) dρ = I e 4ßρ sin sρ u(ρ) dρ (:1) iρs sρ (4.),(4.4),(4.5),(5.1) (pqr) j R p = pa + qb + rc; r j = x j a + y j b + z j c p I e f j expfßi(r p + r j ) (s s )= g (A.7) (A.8)

Ψ n (A.8) p L 1 X Ψ(s) = I e p= M 1 X q= N 1 X nx r= j=1 ρ f j exp ßi (R p + r j ) (s s ) (.14) a Λ ; b Λ ; c Λ (.1) ff (A.) (a a Λ )=(b b Λ )=(c c Λ )=1 (A.1) (b a Λ )=(c a Λ )=(c b Λ )=(a b Λ )=(a c Λ )=(b c Λ )= (A.11) (s s )= (s s )= = οa Λ + b Λ + c Λ (A.1) a; b; c (A.1),(A.11) a (s s )=ο ; b (s s )= ; c (s s )= (5:1) (A.7) (A.1) (A.1),(A.11) (R p + r j ) (s s ) = (pa + qb + ec + x j a + y j b + z j c) (οa Λ + b Λ + c Λ ) = pο + q + r + x j ο + y j + z j (A.13) (A.) p L 1 X Ψ(ο ) = I e p= M 1 X e ßipο q= p L 1 X p= N 1 X e ßiqο r= e ßirο nx j=1 e ßipο = 1 eßilο 1 e ßiο = eßilο (e ßiLο e ßiLο ) e ßiο (e ßiο e ßiο ) = sin ßLο sin ßο eßi(l 1)ο = f j e ßi(οx j + y j + z j ) q G 1 (ο)e ßi(L 1)ο! (4:4) (A.14) (A.15) j F (ο ) = = nx j=1 nx f j e ßi(οx j + y j + z j ) f j cos ß(οx j + y j + z j )+i nx j=1 j=1 f j sin ß(οx j + y j + z j )(A.16) (4.5) (A.15),(A.16) (A.14) Ψ(ο ) = p I e qg 1 (ο)g ( )G 3 ( )e ßif(L 1)ο+(M 1) +(N 1) g (A.17) 1

(4.3) (.6) (.1) 1 d = h =(ha Λ + kb Λ + `c Λ ) = h a Λ + k b Λ + `c Λ +hk(a Λ b Λ )+k`(b Λ c Λ )+`h(c Λ a Λ ) (A.18) b a c (.14) v = abc sin fi; (A.18) ja Λ jb cj j = abc sin fi = 1 a sin fi jb Λ jc aj j = abc sin fi = 1 b jc Λ ja bj j = abc sin fi = 1 c sin fi b Λ? a Λ b Λ? c Λ 6 >= >; d a Λ c Λ = ß fi (a Λ b Λ )=(b Λ c Λ )= (c Λ a Λ cos fi )= ac sin fi (A.1) (A.) 1 d = h a sin fi + k b + ` c sin fi h` cos fi ac sin fi (A.1) (4.3) (A.1) Bragg h; k; ` ο; ; Bragg (11.6),(11.7) F (hk`) (A.16) e ßi(hx j +ky j +`z j ) + e ßifh(x j + 1 )+k(y j + 1 )+`(z j + 1 )g i = e ßi(hx j +ky j +`z j ) h1+e ßi(h+k+`) F (hk`) =f1 +( 1) h+k+`g n= = f1 +( 1) h+k+`ge ßi(hx j +ky j +`z j ) X j=1 f j e ßi(hx j +ky j +`z j ) (A.) (A.3) (14.1) 18 (A.3)