QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

Similar documents
TOP URL 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

TOP URL 1

TOP URL 1

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

TOP URL 1

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

YITP50.dvi

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

Einstein ( ) YITP

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

『共形場理論』

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0406_total.pdf

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Gmech08.dvi

arxiv: v1(astro-ph.co)

量子力学 問題


2000年度『数学展望 I』講義録

main.dvi

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

Note.tex 2008/09/19( )

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

QMII_10.dvi


all.dvi

( )

SO(2)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

構造と連続体の力学基礎

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

A

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

gr09.dvi

The Physics of Atmospheres CAPTER :

量子力学A

CVMに基づくNi-Al合金の

CKY CKY CKY 4 Kerr CKY

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

all.dvi

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

all.dvi

四変数基本対称式の解放

,,..,. 1

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

susy.dvi

6.1 (P (P (P (P (P (P (, P (, P.

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

1 c Koichi Suga, ISBN

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

SUSY DWs

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)


30

meiji_resume_1.PDF

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

201711grade1ouyou.pdf

6.1 (P (P (P (P (P (P (, P (, P.101

3 exotica

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

³ÎΨÏÀ


λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

( ) (ver )

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

第5章 偏微分方程式の境界値問題

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Transcription:

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

(vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann [4] first order formalism Palatini formalism Riemann F () Heller [5] Newton 1 1 E-mail address: hfukaya[at]het.phys.sci.osaka-u.ac.jp ([at] @ ) 2

2 [2, 3] Nash & Sen [2] Riemann F E R 4 F F F G G F G U(1) x ϕ(x) F g(x) G ϕ (x) = g(x)ϕ(x), (1) U i = S 4 G = SU(2) S 3 F F G P G F E P F/G G P u T u (P ) V u (P ), H u (P ) u P T (P ) = V (P ) H(P ) 2 2 P P T (P ) 3

- P u = (x, g) [x R 4, g G] - ω = g 1 dg + g 1 Ag, A = A a µ(x)t a dx µ, (2) A a µ(x) T a G T (P ) X H(P ) ω, X = 0 (3) ω G ω T u (P ) H u (P ) ω ( ) g hg A hdh 1 + hah 1, (4) 2- ω Ω = dω + ω ω = g 1 (da + A A)g = g 1 F g, (5) F 2- F E ω 3 QCD QCD Euclid SU(3) P ρ ρ S θ = θ 4 TrF F, (6) θ ρ = exp(is θ ) 3 QCD θ 3 4

g µν = diag(1, 1, 1, 1) Hodge : F µν = 1 2 F αβg αγ g βδ ϵ γδµν. (7) S g = 1 4g 2 TrF F +, (8) P : Q = P F/G. (9) F Gauge Dirac D S q = d 4 x g qdq, (10) F QCD P Q ρ = exp( S g + is θ S q ) ρ G Lüscher U(1) [6] 4 solder 1- GL(4, R) F () 5

4 + 4 2 = 20 x T x R 4 GL(4, R) V R 4 v V t T x e v a = e a µt µ. (11) 4 1- e = (e 1 µdx µ, e 2 µdx µ, e 3 µdx µ, e 4 µdx µ ) solder 1- (solder 1-form) solder 1- solder 1-1- solder 1- e solder 1- e 1- solder 1- θ F () 1- θ = g 1 e (12) g hg e he θ F () u = (x, g) 4 θ F () 1- x u X X V u (F ()) θ, X = 0 5 (3) 1- H u (F ()) X T u (F ()) ω, X = 0 θ, X = 0 X = 0, (14) X 0 ω, θ X ω, θ ( ) 4 (12) u = (x, g) solder 1- F () X θ, X = e, π (X), (13) π π : F () ( ) π : T (F ()) T () e θ F () 1-5 X V u (F ()) π (X) = 0 6

ω 4 4 = 16, θ 4 F () 20 ω, θ F () X F () F () 1- solder 1- F () 2- (torsion 2-form) Θ = dθ + ω θ, (15) F () GL(4, R) 4 2 4 = 64 4 4 = 16 80 2 (reduction) GL(4, R) C GL(4, R) = O(4) C C O(4) O(4) Euclid Riemann Affine g µν = e a µe b νη ab, η ab = diag(1, 1, 1, 1), (16) Γ λ µν = [ A A ] a ν b η cae b µe c σg σλ + ( ), (17) ( ) A A ν O(4) a, b O(4) QCD QCD g µν (x)x µ (x)y ν (x) (18) g µν (metricity condition) ρ g µν g µν x ρ g µσ Γ σ νρ g νσ Γ σ µρ = 0, (19) 7

2 O(4) (reduction) 6 4 = 24, g µν 10, g µν O(4) 6 40 10 4 = 40 80 40 40 = 0 40 [D ν e µ ] a = ( ν δ a b + [A ν] a b )eb µ = 0, (20) A ν GL(4, R) D ν A S ν (10 4 = 40 ) A A ν (6 4 = 24 ) A ν = A S ν + A A ν ( ν δ a b + [AA ν ] a b )eb µ = [A S ν ] a b eb µ, (21) e a µ 16 AA ν 24 40 AS ν 40 A S A A ν O(4) GL(4, R) O(4) Γ ρ µν = [A S ν ] a b eb µ[e 1 ] ρ a, (22) 21 vierbein postulate [ D ν e µ ] a ( ν δ a b + [AA ν ] a b )eb µ = Γ ρ µνe a ρ. (23) D ν O(4) x ρ (g µν ) = x ρ (e a µe b νη ab ) = [ D ρ e µ ] a e b νη ab + e a µ[ D ρ e ν ] b η ab = Γ λ µρg λν + Γ λ νρg µλ, (24) (19) (20) GL(4, R) 80 40 = 40 Affine Γ λ µν = [e 1 ] λ a[ D ν e µ ] a = [ A A ] a ν b η cae b µe c σg σλ + ( ν e a µ)η ca e c σg σλ, (25) 8

Γ λ µν = Γ λ νµ T λ µν = Γ λ µν Γ λ νµ (23) [ D ν e µ ] a [ D µ e ν ] a = 0, (26) 2-15 2- F () Θ 24 O(4) g µν (10 ) g µν O(4) 6 16 16 A µ QCD ( 6) g µν ( 10) Γ λ µν Christoffel 2 θ S θ = θ 4 TrF F, (27) GL(4, R) QCD iπ ( ) GL(4, R) F = 0 GL(4, R) O(4) θ Hirzebruch Signature σa b = (e 1 ) µ a[d ν e µ ] b dx ν Tr [σ σ F ], (28) (21) (21) GL(4, R) O(4) g µν UV S Λ = Λpl 2 e a e b e c e d ϵ abcd, (29) S EH = 2 pl e a e b [ DA A ] c d ηde ϵ abce, (30) 9

Einstein-Hilbert pl DA A QCD 2 Einstein-Hilbert S m = d 4 x ψg µν γ a e a µ( ν + [A ν ] b cη cd γ b γ d )ψ(x), (31) (γ a 4 4 ) S = S Λ +S EH +S m A A µ (26) e a µ Einstein 6 2 2: GL(4, R) [A µ ] a b, [e µ] a 80 ( ) [D ν e µ ] a = 0 O(4)+ [A A µ ] a b, [e µ] a (g µν ) 40 ( ) [ D ν e µ ] a [ D µ e ν ] a = 0 O(4)+ O(4) [e µ ] a (g µν ) 16 g µν 10 5 QCD [7] g µν 6 (25) Riemann Rµνρ λ = [e 1 ] λ a[ D ρ A A ν ] a b e b µ 10

g µν 2 2 QCD g µν QCD 2 0, 1/2, 1 [8] (29) (30) Einstein-Hilbert g µν QED QED SU(2) Higgs W Witten [9] Chern-Simons 2 GL(4, R) 11

6 Affine (Einstein-Hilbert) 1 3 Chern-Simons QCD [1],, (1987) (ISBN-10: 4000050400). [2] C. Nash and S. Sen, Topology and Geometry for Physicists, Dover Books on athematics Reprint (2011) (ISBN-10: 0486478521). [3] ( ), I, II, (2000,2001) (ISBN-10: 4894711656, 4894714264). [4],, (1989) (ISBN-10: 4785310588). [5]. Heller, Evolution of Space-Time Structure, Concepts of Physics 3, 2006, pp. 119-133. [6]. Luscher, Nucl. Phys. B 549, 295 (1999) doi:10.1016/s0550-3213(99)00115-7 [heplat/9811032]. [7],, Volume1 (2009). [8]. Srednicki, Quantum Field Theory, (2007) Cambridge University Press (ISBN- 10: 0521864496). 12

[9] E. Witten, Nucl. Phys. B 311, 46 (1988) doi:10.1016/0550-3213(88)90143-5. 13