k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

Similar documents
note1.dvi

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

all.dvi

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Untitled


all.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

73

A


(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

力学的性質

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

OHP.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

~nabe/lecture/index.html 2

all.dvi

B ver B

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

( ) ( )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

QMI_09.dvi

QMI_10.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

構造と連続体の力学基礎


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

応力とひずみ.ppt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Report98.dvi

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

2011de.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)


Part () () Γ Part ,

chap03.dvi

2012専門分科会_new_4.pptx

TOP URL 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

keisoku01.dvi

phs.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

i

1

i 18 2H 2 + O 2 2H 2 + ( ) 3K

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

薄膜結晶成長の基礎3.dvi

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

Gmech08.dvi

Korteweg-de Vries

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

pdf

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


all.dvi

数学Ⅱ演習(足助・09夏)

第5章 偏微分方程式の境界値問題

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

st.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

第1章 微分方程式と近似解法

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

MUFFIN3


.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

gr09.dvi

Transcription:

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e 0 12

(e) e (f) (e) (f) non-linear deformation S. Karato, Deformation of Earth Materials, Cambridge University Press (c) (2.1) (c) 3 3 ij = C ijkl e kl = C ijkl e kl (i, j = 1, 2, 3 or x, y, z) (2.2) k=1 l=1 k C ijkl (1.14) (1.23) (2.2) i j k l 3x3x3x3= ij kl (C ijkl = C klij ) U d Q p V (2.3) dq d Q - T (2.3) pdv p (1.9) (1.25) (1.9) ij = pδ ij (1.25) dv/v = de ii pdv ij de ij 13

traction t i Aki and Richards, Quantitative Seismology, 2.2 (2.3) (2.4) U(S, V ) (2.4) ( ) U T =, (2.5) S e ij S (a) e= ΔL /L L Δt v = L /Δt L O (b) T (2.4) (2.6) T ( ) F S =, (2.7) T e ij [- ] (2.5) (2.7) C p C V K S K T K S /K T = C p /C V 1+γαT α 3 10 5 T 1 γ Mie-Grunneisen 2 3 1000 Karato(2008) W U F ( ) W ij = (2.8) e ij 14 S or T

W strain energy (2.2) C ijkl = ij e kl = 2 W e kl e ij = 2 W e ij e kl = kl e ij = C klij ij kl 3 3 3 3 = C ijkl = C klij W e ij = 0 W = 0 (2.8) ij (2.9) (2.10) e ij e ij (2.11) x k kx 2 /2 (2.10) k > 0 2.11 (23.2) k ij x i x j /2 k ij = k ji 2.2 Elastic constants for isotropic media C ijkl k C ijkl anisotropy x xx (a) x 15

xx y x e y y e xx <0 >0 e =0 xy xx e, e y y, e =0 xx xy (a) (b) e xx y z e yy e zz e xy (a) Karato (2008) xy z z z monoclinic yz z x x orthorhombic z hexagonal z xy (a) transverse isotropy 16

C ijkl (a) Lamé constants λ µ (2.10) (2.12) Einstein l, i, k C ijkl C ijkl = λδ ij δ kl + µ (δ ik δ jl + δ il δ jk ) (2.13) (2.14) f i = kx i 2.4 e ik = 0 (2.12) (2.14) µ [- ] u i (b) Young modulus and Poisson s ratio (b) (a) x xx x e xx > 0 (2.15) E x (y z ) E x y z ν (2.16) 17

[- ] (2.14)-(2.16) E ν (c) bulk modulus and shear modulus bulk modulus incompressibility K (2.17) K 2.5 (2.7) S T 1.9 (1.25) (2.14) p = 1 3 ( xx + yy + zz ) = 3λ + 2µ 3 (e xx + e yy + e zz ) = (2.17) 3λ + 2µ V 3 V (2.18) µ (a) µ K µ free oscillation (λ, µ) (E, ν) (K, µ) (c) p p S z ρ z g p(z) z p(z) z + z p(z + z) ρgdv = ρgs z (2.19) 1.9 (c) V/V 18

2.3 Elasto-dynamic equation md 2 x i /dt 2 = f i = kx i m x, y, z ρ V = x y z u = (u x, u y, u z ) u(x, y, z, t) z Δx Δz Δy xx xy xz x y y x xx xy xz x Δx y x ρ V 2 u x t 2 = ρ 2 u x t 2 x y z f = (f x, f y, f z ) f x V = f x x y z traction A B x x ij i x j x xx A x (x + x, y, z) y z xx (x + x, y, z, t) y z B x (x, y, z) xx (x, y, z, t) y z xx (x + x, y, z, t) y z xx (x, y, z, t) y z ) ( xx (x, y, z, t) + xx x x y z xx (x, y, z, t) y z = xx x x y z 19

y x yx (x, y + y, z, t) yx (x, y, z, t) x z yx (x, y + y, z, t) x z yx (x, y, z, t) x z yx y x y z z zx zx (x, y, z + z, t) x y zx (x, y, z, t) x y zx z x y z = ( ) xx x y z + f x x y z ρ 2 u x t 2 x y z = x + yx y + zx z y z (2.20) (2.21) (2.22) (2.23) elasto-dynamic equation homogeneous2.14 θ (1.25) 2 Laplacian [- ] 2.24 θ e xx + e yy + e zz = u x x + u y y + u z z = u j x j = u j,j 2 2 x 2 + 2 y 2 + 2 z 2 (2.24). Seismic wave velocities P S P (2.24) 20

Aki-Richards [- ] (a) period T (b) frequency f (c) velocity v (d) wavelength λ (e) angular frequency ω (f) wavenumber k k 1/( ) f ω k ω [- ] t x f(x, t) x v f(x, t) =f(t x/v) x f(x, t) P S decoupled x v f(t x/v) ω monochromatic ω ω cos(ωt) x v cos(ω(t x/v)) cos sin e iθ = cos θ + i sin θ (2.25) { ( )} (2.26) P x wavefront amplitudep x (a) x u =(u x,u y,u z ) (u, v, w) u y x 21

P A α (2.26) u(x, t) = v(x, t) = w(x, t) = (2.27) (2.24) f i f i (2.27) (2.24) u i =1 θ = u x + v y + w z = u ( x = iω ) { ( A exp iω t x )} α α ( θ x = A iω ) 2 { ( exp iω t x )} α α ( 2 u = 2 u x 2 + 2 u y 2 + 2 u z 2 = 2 u x 2 = A 2 u t 2 =(iω)2 A exp iω α ) 2 exp { ( iω t x )} α { ( iω t x )} α { ( (iω) 2 ρa exp iω t x )} ( = (λ + µ)a iω ) 2 { ( exp iω t x )} ( + µa iω ) 2 { ( exp iω t x )} α α α α α A exp( ) ρω 2 = λ + µ α 2 ω 2 µ α 2 ω2 P α (2.28) S (b) y S β P, B u(x, t) = v(x, t) = (2.29) w(x, t) = (2.24) S (2.30) λ µ α >β P P λ µ α 3β 1.7β [- ] S θ 22