Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Similar documents
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

Twist knot orbifold Chern-Simons

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

本文/目次(裏白)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

プログラム

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

量子力学 問題

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

( )

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

基礎数学I

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

( ) (, ) ( )

Lecture 12. Properties of Expanders

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

Mathematical Logic I 12 Contents I Zorn

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

日本内科学会雑誌第102巻第4号

TOP URL 1

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ver Web

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

p.2/76

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji


1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Note.tex 2008/09/19( )

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18


G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R


linearal1.dvi

τ τ

第86回日本感染症学会総会学術集会後抄録(I)

chap10.dvi

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

meiji_resume_1.PDF

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

xia2.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

untitled

³ÎΨÏÀ

December 28, 2018

Dynkin Serre Weyl

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

all.dvi

newmain.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

koji07-01.dvi

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


D 24 D D D

B ver B

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

untitled

TOP URL 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

OHP.dvi

I II III IV V

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

TOP URL 1

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

Transcription:

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo (indeterminacy ).,,.,, (I), Ω m., ( 6.2)., ( 6.3).,,,., ()Milnor,.,. 2,.. G, Γ k G,, Γ 1 G := G, Γ 2 G := [G, G], Γ 3 G := [[G, G], G],..., Γ m G := [Γ m 1 G, G],. F q, x 1,..., x q., Q m Γ m 1 F/Γ m F. 0 Q m F/Γ m F p m 1 F/Γm 1 F 0 (central extension). (1) Q m,, (Hall basis) ([CFL, Theorem 1.5] ).,. 1, JSPS (:25800049). E-mail address: nosaka@math.kyushu-u.ac.jp

L S 3, q-. - (m l, l l ), preferred ( l q). f 2 : π 1 (S 3 \ L) F/Γ 2 F = Z q., [M1, IO],. m N, : A m. k m, f k : π 1 (S 3 \ L) F/Γ k F π 1 (S 3 \ L) f m f 2 f 3 f 4 F/Γ 2 F F/Γ 3 F F/Γ 4 F F/Γ m F. p 2 p 3 p m 1., f m, f m f m (, )., [x i ] F/Γ m F, {x k i } k Z Q m 2., f m preferred l l Q m ( f m (m l ) ±1 )., L, q-tuple : ( fm (l 1 ),..., f m (l q ) ) (Q m ) q., A m+1., 2.1 ([M2]). A m., f m f m+1 : π 1 (S 3 \ L) F/Γ m+1 F, m,, l q, f m (l l ) = 0 Q m.,,.,. : (I) F/Γ m F., ( ) Z X 1,..., X q. f m (l l ) ; [M2, IO]. (II), l l. Milnor [M2, 3] ([Hil, Chapters 1 & 11 14] ), f m (l l ) l l ( (7))., m q = #L. (III), f m, F/Γ m F. (IV), Milnor [M2], I {1, 2,..., q} m.,. (V), Milnor, ([M2, Hil, St] ).,. 2,, m.

3 Magnus., Gupta-Gupta[GG] Magnus.,, F/Γ m F.. Ω m Z[λ (j) i ],, λ (j) i i {1, 2,..., m 1}, j {1,..., q} (, qm q)., Υ m : F GL m (Ω m ) : Υ m (x j ) = 1 λ (j) 1 0 0 0 1 λ (j) 2 0......... 0 0 1 λ (j) m 1 0 0 0 1, (cf.,, ). I m. (i) y k Γ k F, Υ m (y) I m, (1, 2)-, (1, 3)-,..., (1, k 1)- ( k < m). (ii), m Γ m F, Υ m (Γ m F ) = {I m }. (iii) [GG], F/Γ m F GL m (Ω m ). (iv) Υ m (Q m ), (1, m)- (, )., (2). E i,j, (i, j)-., b Im(Υ m ), B p 1 m (b) Im(Υ m+1 )., (iv), B, (1, m + 1)-.,, Im(Υ m+1 ) :. B 1 AB = (B + ωe 1,m+1 ) 1 A(B + ωe 1,m+1 ), A Im(Υ m+1 ), ω Ω m+1. (2) 4. 4.1 4.2. (II)(III).. L D, A m. 1, α 1, α 2,..., α Nj l j. α 1 m j. β k α k α k+1, ϵ k {±1} α k β k. Wirtinger, f m { arc of D } F/Γ m F., k, C : {α k } k Nj Im(Υ m+1 ) : C(α 1 ) = Υ m+1 (x j ) (., 1 < k N j, B k p 1 m fm (β k ) ), C(α k+1 ) B ϵ k k C(α k ) B ϵ k k. (2), B k., C : { arc of D } Im(Υ m+1 ).

l j β1 β 2 β Nj α 1 α 2 α 3 1: D, l j, α i, β i. 4.1, N j -. : Ψ m (j) := Υ m+1 (x j ) 1 B ϵ N j N j C(α Nj ) B ϵ N j N j Υ m+1 (Q m+1 ). (3), Ψ m (j) l j ( j q = #L)., j #L, I j : Γ m F Γ m+1 F ; y x 1 j y 1 x j y, (4). I j : Υ m (Q m ) Υ m+1 (Q m+1 )., I j, Ψ m (j) Milnor : 4.1. I j, I j ( Υm f m (l j ) ) = Ψ m (j).. 5.1 (5).. B ϵ 1 1 B ϵ 2 2 B ϵ N j N j B, [g, h] = ghg 1 h 1.,, Ψ m (j) = Υ m ([x 1 j, B 1 ]). [x j, z] = [x j, p m (z)] Q m+1 ( z Γ m 1 F ). 1 p m (B) = f m (l j ), I j ( Υm f m (l j ) ) = Υ m ([x 1 j, f m (l 1 j )]) = Υ m ([x 1 j, B 1 ]) = Ψ m (j).., 2.1, f m+1 : 4.2. m f m (l l ), l #L,., C : { arc of D } Im(Υ m+1 ) f m+1 : π 1 (S 3 \ L) Υ m+1 (F/Γ m+1 F ).. C, j 1 k < N j, k- Wirtinger. 4.1, Ψ m (j) = 0 N j Wirtinger., C, Wirtinger.,., 2.1.,. f 2 : π 1 (S 3 \ L) Z q., k h f k : π 1 (S 3 \ L) F/Γ k F (, A h ), h- Milnor f h (l l ). 4.2, f h+1., l f m (l l ) 0 m., 4.1, m- Milnor., Ω m, Mathematica., (I) (III),. 5,., c(l) L, lk(l) Z.

5.1,. (IV),, Ω m. r, s N, ι s : Ω r Ω r+s. κ r : Ω s Ω r+s κ r (λ (j) i ) = λ (j) i+r ( r ). : [, ] : Ω r κ r (Ω s ) Ω r+s ; (a, κ r (b)) ι s (a)κ r (b) ι r (b)κ s (a). 3 (iv), Υ s (Q s ) Ω s, [, ] : Υ r (Q r ) κ r ( Υs (Q s ) ) Υ r+s (Q r+s ).,,. Υ r+s (ghg 1 h 1 ) = [Υ r (g), κ r ( Υs (h) ) ], g Γ r 1 F, and h Γ s 1 F (5)., Υ r+s (ghg 1 h 1 ),. [CFL] Corollaries 2.2 2.3.,,, (Jacobi) (S1), (S2), (S2 ), (S3), Q m., (5), Milnor (Table 1 )... S 2., J = (j 1 j n ) {1,..., q} n σ = (σ 1,..., σ n 1 ) (S 2 ) n 1, σ(j) = (j σ 1,..., j σ n) N n : (j σ 1,..., j σ n) = σ n 1 (σ n 2 ( σ 4 (σ 3 (σ 2 (σ 1 (j 1, j 2 ), j 3 ), j 4 ), j 5 ) ), j n )., : [[ [[λ (j 1) 1, λ (j 2) 2 ], λ (j 3) 3 ] ], λ (jn) n ] = sign(σ) λ (jσ 1 ) 1 λ (jσ 2 ) 2 λ (jσ n) n Ω n+1. σ (S 2 ) n 1, (5) () : Υ m ([[ [[x j1, x j2 ], x j3 ] ], x jm 1 ]) = [[ [[λ (j 1) 1, λ (j 2) 2 ], λ (j 3) 3 ] ], λ (j m 1) m 1 ]. (6) α γ β x 1 x 2 x 1 x 2 x 3 x 4 x m 2 x m 1 x m 2: Whitehead Milnor.

5.2 Whitehead,., Whitehead (cf. [IO, 10.3], [Mu1, 8][St]). x 1, x 2 α, β, γ, 2. < 4. m = 4. Wirtinger, C : {arcs of D} GL 5 (Ω 5 ) C(α) = C(x 2 )C(x 1 )C(x 2 ) 1, C(β) = C(α) 1 C(x 1 )C(α), C(γ) = C(β) 1 C(α)C(β).., f(x i ) = Υ 5 (x i ), C(α) C(β). C(β) = C(α) = 1 λ (1) 1 [λ (2) 1, λ(1) 2 ] [λ(1) 1, λ(2) 2 ]λ(2) 3 [λ (1) 1, λ(2) 2 ]λ(2) 3 λ(2) 4 0 1 λ (1) 2 [λ (2) 2, λ(1) 3 ] [λ(1) 2, λ(2) 3 ]λ(2) 4 0 0 1 λ (1) 3 [λ (2) 3, λ(1) 4 ] 0 0 0 1 λ (1) 4 0 0 0 0 1 1 λ (1) 1 0 [[λ (1) 1, λ(2) 2 ], λ(1) 3 ] [[λ(1) 2, λ(2) 3 ], λ(1) 4 ]λ(1) 1 [[λ (1) 0 1 λ (1) 2 0 [[λ (1) 0 0 1 λ (1) 1, λ(2) 2 ], λ(1) 3 ]λ(2) 2, λ(2) 3 ], λ(1) 4 ] 3 0 0 0 0 1 λ (1) 4 0 0 0 0 1, 4 [λ (1) 1, λ(2) 2 ][λ(1) 3, λ(2) 4 ] (,, 4 4, C f 4 : π 1 (S 3 \L) GL 4 (Ω 4 ) )., (13) Ψ 4 (j), : Ψ 4 (1) = Υ 5 (x 1 ) 1 C(α)C(x 2 ) 1 C(β)C(x 2 )Υ 5 (x 1 )C(x 2 ) 1 C(β) 1 C(x 2 )C(α) 1, Ψ 4 (2) = Υ 5 (x 2 ) 1 C(x 1 )C(β) 1 Υ 5 (x 2 )C(β)C(x 1 ) Υ 5 (Q 5 ). (Mathematica ), (1, 5)-: Ψ 4,1 (N 1 ) (1,5) = Ψ 4,2 (N 2 ) (1,5) = [[[λ (1) 3 ], λ (2) 4 ] = λ (1) 3 λ (1) 4 λ (2) 1 λ (2) 2 2λ (1) 2 λ (1) 4 λ (2) 1 λ (2) 3 + 2λ (1) 1 λ (1) 3 λ (2) 2 λ (2) 4 λ (1) 1 λ (1) 2 λ (2) 3 λ (2) 4.,. PC, Milnor, cl(l), m < 11 cl(l) < 20., lk(l) = 0 c(l) < 9 2- L,., 1,, : Υ := [[[λ (1) 3 ], λ (2) 4 ] Ω 5, Λ := [[[[[λ (1) 4 ], λ (1) 5 ], λ (2) 6 ] Ω 7., lk(l) = 0 c(l) = 9.,, Υ Λ., lk(l) = 0 2, Milnor., L m, ( 2 ). k- l k π 1 (S 3 \ L m ), Ab(l k ) = 0. 5.1. L m Υ m f m (l k ) (1,m),. ( 1) m k+1[( [[ [[λ (1) 2 ], λ (3) 3 ] ], λ (k 1) k 1, ]]), ( [[ [[λ (m) k, λ (m 1) k+1 ], λ (m 2) k+2 ] ], λ m (k+1) ] )]. [M2, HM] k = 1, k.

Link 5 2 1 7 2 4 7 2 6 7 2 8 8 2 10 8 2 12 8 2 13 8 2 15 m 4 4 4 4 6 6 4 4 Ψ m (1) Υ 2Υ Υ Υ Λ Λ Υ Υ Ψ m (2) Υ 2Υ Υ Υ Λ Λ Υ Υ 1: 0, Milnor. 6 µ-. f m (l l ) 0., [M1, M2] Milnor. indeteminacy,., µ-,. (V),.. Milnor [M2] ([Hil, 12] )., h- π 1 (S 3 \ L)/Γ h π 1 (S 3 \ L) : x1,..., x q [xj, w j ] = 1 for j q, Γ h F, (7) x j w j, j- (w j h )., F/Γ h F. F/Γ h F = ImΥ h, N h,l, (7) ImΥ h /N h,l f h., 2.1, w j Γ m F, [x j, w j ] Γ m+1 F., w j, [x j, w j ] f h., [x j, w j ], ImΥ h /N h,l., h, N h,l f h : π 1 (S 3 \ L) Im(Υ h )/N h,l, f h 1 = [p h 1 ] f h f h (m j ) = [Υ h (x j )]., ImΥ h K h., A m h = m, N m,l = 0 f m = f m., f h N h,l K h. p h s h : Im(Υ h ) Im(Υ h+1 ). (3), 1 α k, β k. s h (K h ) Im(Υ h+1 ), s h (K h )., C h (α k ), Im(Υ h+1 )/ s h (K h ), :, C h (α 1 ) = Υ h+1 (x j ),, 1 < k N j, B k Im(Υ h+1 ) [p h (B k )] = f h (β k ), C h (α k+1 ) B ϵ k k C h (α k ) B ϵ k k., N j -, : µ h L(j) := Υ m+1 (x j ) 1 B ϵ N j N j C h (α Nj ) B ϵ N j N j Im(Υ h+1 ))/ s h (K h ). (8), µ h L (j) Υ h+1(q h+1 )/ ( s h (K h ) Υ h (Q h ) ) ( p h ( µ h L (j))) = µh 1 L (j) = 0 )., N h+1,l, s h (K h ) µ h L (1),..., µh L (#L)., N h+1,l = s h (K h ), µ h L(1),..., µ h L(#L).

, 4.2, C h f h+1 : π 1 (S 3 \ L) Im(Υ h+1 )/N h+1,l, : π 1 (S 3 \ L) f h+1 f m f m+1 f h Im(Υ m ) Im(Υ m+1 )/N m+1,l Im(Υ h )/N h,l Im(Υ h+1 )/N h+1,l. p m p h 1 4.1 modulo N h,l, : 6.1. j #L, µ h L (j) [Υ h+1, s h ( f h (l j ))]., 4.1., : 6.2. h- µ-, #L-tuple ( µ h L (1),..., µh L (#L))., µ-., I, Z (I)., ( ),., µ-, N h,l Ω m,,.,, µ-.,, ( s h, ). 6.3. f h, : π 1 (S 3 \ L)/Γ h π 1 (S 3 \ L) = ImΥ h /N h,l.. h = m, (7). h. f h+1 h π 1 (S 3 \ L)/Γ h π 1 (S 3 \ L)., 6.1 f h+1 ([x j, w j ]) = µ h L (j), f h+1., µ-, (7),,. p h 7 µ-, µ-., (8) N h,l Υ h+1 (Q h+1 ), ( 7.1). 5.1, Υ h (Q h ) h., m., m,..., h, h+1 : { [dk, η] k h, d k k 1, η Υ m k+1 (Q m k+1 ) } { [ µ h 1 L (l), Υ 2(x j )] l q, j q }. ImΥ h, (N h,l )

7.1. (8) p 1 h (N h,l) Υ h+1 (Q h+1 ) h., p 1 h (N h,l) Υ h+1 (Q h+1 )., µ-., : 7.2. 5 2 1, 7 2 6, 7 2 8, 8 2 13, m = 4 ( 1 ).. h = 5, µ 5 L (j) ±[[[[λ(2) 1, λ (1) 4 ], λ (2) 5 ]. (, µ-)., h = 6, 7, h.,,,., #L 3, #L = 2 lk(l) 2.,.. 7.3. L Borromean 6 3 2. 5.1 µ3 L (j) [[λ(j) 1, λ (j+1) 2 ], λ (j+2) 3 ] ( j Z /3), 4 : 4 = Z [[[λ (j) 1, λ (j+1) 2 ], λ (j+2) 3 ], λ (k) 4 ] j,k Z /3., h = 4,. µ 4 L(j) [[[λ (j) 1, λ (j+1) 2 ], λ (j+1) 3 ], λ (j+2) 4 ], modulo 4., h = 5, 5 : [[[[λ (j) 1, λ (j+1) 2 ], λ (j+2) 3 ], λ (k) 4 ], λ (l) 5 ], [[[λ (j) 1, λ (j+1) 2 ], λ (j+2) 3 ], [λ (k) 4, λ (l) 5 ]], [ µ 4 L(j), λ (k) 5 ] j,k,l Z /3., h = 5 : µ 5 L(j) [[[[λ (j) 1, λ (j+1) 2 ], λ (j+1) 3 ], λ (j+1) 4 ], λ (j+2) 5 ], modulo 5., h with k = 3, 4, k+1 modulo µ k+1 L (j).,, µ h L (j) h,., c(l) < 11 Borromean. L = 9 3 n25 L = 10 3 a151. : µ 4 L (1) [[[λ(2) 1, λ (3) 2 ], λ (3) 4 ]] [[[λ (3) 4 ]] [[[λ (3) 1, λ (1) 3 ], λ (3) 4 ], µ 4 L (2) [[[λ(2) 1, λ (3) 2 ], λ (3) 4 ], µ 4 L (3) [[[λ(3) 1, λ (1) 3 ], λ (3) 4 ], µ 4 L (1) [[[λ(2) 1, λ (3) 2 ], λ (3) 4 ]] [[[λ (1) 4 ], µ 4 L (2) [[[λ(3) 1, λ (1) 4 + λ (2) 4 ] [[[λ (3) 3 ], λ (3) 4 ], µ 4 L (3) [[[λ(1) 3 ], λ (3) 4 ]., #L 3 µ-., L = 6 3 2 L = 9 3 n25 Alexander. [Mu2] µ-,..

7.4., #L = 2., lk(l) = 0., 7.5. #L = 2. L µ-, lk(l) Z.., lk(l)[λ (1) 2 ], 7.1, h with h > 2 lk(l) Z ; µ-.,, lk(l) 3., #L = 2 lk(l) = 3., c(l) 9 lk(l) = 3.., 4, µ-. Link L µ 3 L (j) µ4 L (j) 5 µ 5 L (1) µ5 L (2) 6 2 1 0 2b 1 + b 2 + b 3 3, B + D F, A + C + E A C A + C + D 6 2 2 0 2b 1 + b 2 3, B E, A C D F B F 8 2 a10 0 2b 1 + b 2 b 3 3, B D + F, A C E C C 8 2 a11 0 2b 1 b 2 + b 3 3, B + D F, A + C + E C C 9 2 a23 0 2b 1 + b 2 + b 3 3, B + D F, A + C + E A + B + D A + C D 9 2 a28 0 2b 1 + b 2 3, B E, A C D F B D F 9 2 a32 0 2b 1 + b 2 + b 3 3, B + D F, A + C + E A + C A C 9 2 a33 0 2b 1 + b 2 b 3 3, B D + F, A C E A + B + C A + B + C 9 2 n15 0 2b 1 + b 2 + b 3 3, B + D F, A + C + E A C + D A + C D 9 2 n16 0 2b 1 + b 2 + b 3 3, B + D F, A + C + E A C + D B C + D, j {1, 2}, : b 1 = [[[λ (1) 3 ], λ (2) 4 ], b 2 = [[[λ (2) 1, λ (1) 4 ], b 3 = [[[λ (1) 4 ], A = [[[[λ (1) 3 ], λ (2) 4 ], λ (2) 5 ], B = [[[[λ (1) 3 ], λ (2) 4 ], λ (1) 5 ], C = [[[[λ (2) 1, λ (1) 4 ], λ (2) 5 ], D = [[[[λ (2) 1, λ (1) 4 ], λ (1) 5 ], E = [[[[λ (2) 1, λ (1) 3 ], λ (2) 4 ], λ (2) 5 ], F = [[[[λ (1) 4 ], λ (1) 5 ]. A : µ-, ([M1, IO, Hil] )., Υ m,. Υ m Taylor ( A.1)., Fox. k {1,..., q}, x k : F Z[F ] () : x i x k = δ i,k, (uv) x k = u x k ε(v) + u v x k, for all u, v F., ε Z[F ] Z.,, y F, n y = ( n 1 y ) x i1 x in x i1 x i2 x in. D i1 i n (y).

A.1. y F, Υ m (y) : 1 ε (D k1 (y)) λ (k1) 1 ε (D k1k 2 (y)) λ (k1) 1 λ (k2) 2 ε ( D k1 k m 1 (y) ) λ (k1) 1 λ (km 1) m 1 k 1 k 1,k 2 k 1,...,k m 1 0 1 ε (D k2 (y)) λ (k2) 2 ε ( D k2 k m 1 (y) ) λ (k2) 2 λ (km 1) m 1 k 2 k 2,...,k m 1 0 0 1 ε ( D k3 k m 1 (y) ) λ (k3) 3 λ (km 1) m 1 k 3,...,k m 1......... 0 0 0 0 1 ε ( D km 1 (y) ) λ (km 1) m 1 k m 1 0 0 0 0 1, k s, k s+1..., k t, {1, 2,..., q} t s+1., y,.,, Υ m : F/Γ m F GL m (Ω m ) (cf. Taylor )., (9), [CFL, 2]. (c 1 c 2 c k ) {1,..., n} k I = a 1 a 2 a I J = b 1 b 2 b J. (c 1 c 2 c k ) I J, I α(1), α(2),, α( I ) J β(1), β(2),..., β( J ), : (i) 1 α(1) < α(2) < < α( I ) k, 1 β(1) < β(2) < < β( J ) k. (ii) i {1, 2,..., I } j {1, 2,..., J } c α(i) = a i c β(j) = b j. (iii) s {1, 2,..., k}, α(i), β(j),. I J, Sh(I, J) (, Sh(I, J) )., [CFL, Lemma 3.3], multi-indexes I J, y F, : ε(d I (y)) ε(d J (y)) = ε(d K (y)) Z. (9) K Sh(I,J), ( m )Magnus. Z X 1,..., X q, X 1,..., X q, J m m., F Magnus, M : F Z X 1,..., X q /J m, : M(y) = ε(y) + ε(d i1 i n (y)) X i1 X i2 X in. (10) n: 0 n<m (i 1,...,i n) {1,2,...,q} n, M, M(Γ m F ) = 0., Γ m F : M : F/Γ m F Z X 1,..., X m /J m., [CFL, Theorem 3.9], : { a I X i1 X in J and K, a J a K = } a L Z. (11) I=(i 1 i n) L Sh(J,K), A.1, 1 + X i Υ m (x i ) ImM Im(Υ m )., (11), Im(Υ m ) GL m (Ω m ).

B., : [CEGS, 5]., (12). A.1, Im(Υ m )., s : Im(Υ m ) Im(Υ m+1 ) (, s, (1, m + 1)-)., ϵ {±1},. ϕ ϵ m : Im(Υ m ) Im(Υ m ) GL m+1 (Ω m+1 ) (12) s. : { ϕm(a, ϵ s(b) 1 s(a)s(b)s(b 1 AB) 1, if ϵ = 1, B) = s(b)s(a)s(b) 1 s(bab 1 ) 1, if ϵ = 1., p m ϕ ϵ m, ϕϵ m Ker(p m) = Υ m+1 (Q m+1 )., B.1. D A m. 4, α k, β k, ϵ k, 1,, Wirtinger, f m { arc of D } Im(Υ m )., (12), Φ m,j (k) := ϕm( ϵt fm (α t ), f m (β t ) ) Υ m+1 (Q m+1 ). (13) t: 1 t k. [CEGS], Φ m,j (k). B.1 ([CEGS, 5] )., Φ m,j (k), (3) Ψ m (j).,, Q m, ( ), Φ m,j (k)., Ψ m,j (k), Φ m,j (k). Φ m,j (k)., µ- ( ). [CEGS] J. S. Carter, J. S. Elhamdadi, M. Graña, M. Saito, Cocycle knot invariants from quandle modules and generalized quandle homology, Osaka J. Math. 42 (2005), 499 541. [CFL] K. T. Chen, R. H. Fox, R. C. Lyndon, Free differential calculus IV, the quotient groups of the lower central series, Ann. of Math. 68 (1958), 81 95. [GG] C. K. Gupta, N. D. Gupta, Generalized Magnus embeddings and some applications, Math. Z. 160 (1978), 75 87. [HM] K. Habiro, J.-B. Meilhan, Finite type invariants and Milnor invariants for Brunnian links, Int. J. Math. 19 (2008), 747 766. [Hil] J. Hillman, Algebraic invariants of links, Series on Knots and everything. 32 World Scientiffc (2012). [IO] K. Igusa, K. Orr, Links, pictures and the homology of nilpotent groups, Topology 40 (2001), 1125 1166. [KN] H. Kodani, T. Nosaka, Milnor invariants via unipotent Magnus embeddings, preprint. [M1] J. W. Milnor, Link groups, Ann. of Math. 59 (1954) 177 195. [M2], Isotopy of links, in Algebraic geometry and topology. A symposium in honor of S. Lefschetz, 280 306, Princeton University Press, Princeton, NJ, 1957 [Mu1] K. Murasugi, Nilpotent coverings of links and Milnor s invariant, Low-dimensional topology, London Math. Soc. Lecture Note Ser., 95, Cambridge Univ. Press, Cambridge-New York (1985), 106 142. [Mu2] K. Murasugi, On Milnor s invariant for links, Trans. Amer. Math. Soc. 124 (1966), 94 110. [St] D. Stein, Computing Massey product invariants of links, Topology and its Applications, 32 (1989), 169 181.