$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

Similar documents
Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1


44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

}\llcorner\backslash$ : (Michiyo Nakane) Seijo University St Pauls University 1 \searrow Maxwell Maxwell 1 Maxwe Maxwe $\mathrm{a}\ma

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

第85 回日本感染症学会総会学術集会後抄録(I)

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

xy n n n- n n n n n xn n n nn n O n n n n n n n n

t Z

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

Armstrong culture Web

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

II Time-stamp: <05/09/30 17:14:06 waki> ii

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2


2012 A, N, Z, Q, R, C

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

6. Euler x

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

ヒラムシに見る柔構造と渦構造の相互作用による効率的な遊泳メカニズム

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

数理解析研究所講究録 第1955巻

$\circ$ MURAKAMI HIROSHI TOKYO METROPOLITAN COLLEGE, MANAGEMENT AND INFORMATION monic $P$ (x $f(x=0$ (pre-conditioning $f(x/p$ (

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

(1) (2) (3) (4) 1

Tabulation of the clasp number of prime knots with up to 10 crossings

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

情報教育と数学の関わり

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

untitled

{ 8. { CHAPTER 8. Å (sampling time) x[k] =x(kå) u(ú) t t + Å (u[k]) x[k + 1] =A d x[k] +B d u[k] (8:) (diãerence equation) A d =e AÅ ; B d = Z Å 0 e A

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

1 # include < stdio.h> 2 # include < string.h> 3 4 int main (){ 5 char str [222]; 6 scanf ("%s", str ); 7 int n= strlen ( str ); 8 for ( int i=n -2; i

2 H23 BioS (i) data d1; input group patno t sex censor; cards;

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開)


ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

第86回日本感染症学会総会学術集会後抄録(II)

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx


SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{

121 $($ 3 exact scienoe \S ( evolution model (\S \infty \infty \infty $\infty$ \S : (\alpha Platon Euclid ( 2 (\beta 3 ( \S $(\beta$ ( 2 ( Era

WikiWeb Wiki Web Wiki 2. Wiki 1 STAR WARS [3] Wiki Wiki Wiki 2 3 Wiki 5W1H Wiki Web 2.2 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 2.3 Wiki 2015 Informa

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

FA

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

数学Ⅱ演習(足助・09夏)

_TZ_4797-haus-local

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)


1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x

example2_time.eps

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

2007-Kanai-paper.dvi

2 ( ) i

all.dvi

Centralizers of Cantor minimal systems

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

Transcription:

$\mathrm{n}$ 1381 2004 168-181 190 Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Technology Kobe University 1 Introduction 2 (i) (ii) (i) Lagrange Newton (ii) Gaus discrete integrable system (i) discrete integrable system -Conlputel$\cdot$ $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\rfloor$ Algebra-Design of Algorithms Implementation and 2 discrete integrable system Lagrange 21 $\mathrm{n}$ discrete integrable system Lagrange Gauss

by is only 188 support 0 Gauss $\mathrm{f}_{p}$ $u_{n+1}= \frac{\alpha u_{n}+1}{u_{n}u_{n-1}}$ (1) 1 Fix aprime number $p$ and at $u\mathit{0}$ $u_{1}\in \mathrm{f}_{p}$ $\mathrm{f}_{p}$ where 2 Assume that an invariant curve is of the following form: the finite prime field of order $p$ $a_{0}(u_{n})^{2}(u_{n\dagger 1})^{2}+a_{1}(u_{n})^{2}u_{n+1}+a_{2}u_{n}(u_{n+1})^{2}+a_{3}(u_{n})^{2}+a_{4}(u_{n+1})^{2}$ $+a5u_{n}$u $n+1$ $+$ a67 $u_{n}+a_{7}un+1+a_{8}=0$ $(2)$ If the mapping has time-reversibility (invariance of equatinos by the transformation $n+1arrow$ $r\iota-1)$ $a_{1}=$ a2 $a_{3}=a_{4}$ and $a_{6}=a_{7}$ $\mathrm{f}_{p}$ 3 Calculate $u_{2}u_{3}$ $u_{4}$ $u_{5}u_{6}$ in $\mathrm{f}_{\mathrm{p}}$ If some $u_{i}$ is equal to 0 in e$\mathrm{x}$change using the eq (1) $p$ and go back to 1 4 Solve the following simultaneous linear eqations for $a0$ $a_{1}$ as $a_{5}$ $\mathit{0}6$ $a_{8}$ in $\mathrm{f}_{p}$ $a_{0}u_{0}^{2}u_{1}^{2}+a_{1}u_{0}u_{1}(u_{0}+u_{1})+a_{3}(u_{0}^{2}+u_{1}^{2})+a_{5}u_{0}u_{1}+a_{6}(u_{0}+u_{1})+a_{8}=0$ $a_{0}u_{1}^{2}u_{2}^{2}+a_{1}u_{1}u_{\mathit{2}}(u_{1}+u_{2})+a_{3}(u_{1}^{2}+u_{2}^{2})+a_{5}u_{1}u_{2}+a6(u_{1}+u_{2})+a_{8}=0$ $a_{0}u_{5}^{2}u_{6}^{2}+a_{1}u_{5}u_{6}(u_{5}+u6)+a_{3}(u_{5}^{2}+u_{6}^{2})+a_{5}u_{5}\mathrm{u}_{6}+a_{6}(u_{5}+u_{6})+a_{8}=0$ If the rank is equal to the number of simultaneous linear equations increase the degree of the invariant cureve and go back to 2 If $(p \alphau_{0} u_{1})=$ (31991 7 2 5) in the case of eq(l) the solution of the $\mathrm{e}\mathrm{q}\mathrm{s}$ $(3)-(3)$ is $(a_{0} a_{1} a_{3} a_{5} a_{6} a_{8})=(010-1271)$ under scaling If $(p \alpha u_{0} u_{1})=$ (32003 7 2 5) $\mathrm{e}\mathrm{q}\mathrm{s}$ the solution of the $(3)-(3)$ is $(a_{0} a_{1} a_{3}a_{5} a_{6} a_{8})=(010-1271)$ under scaling 5 By the Chinese remainder theorem we guess that $a_{0}=a_{3}=0$ and $a_{1}=a_{8}=1$ in the $\alpha$ solution over Q Furthermore we guess that $a_{5}$ $a\epsilon$ and depend on the parameter $\mathrm{q}$ and initial conditions Therefore $a_{5}$ and $a_{6}$ are conserved quantities in $u_{n}u_{n+1}(u_{n}+u_{n+1})+h_{1}u_{n}u_{n+1}+h_{2}(u_{n}+u_{n+1})+1$ $=$ 0 (3) where $H_{1}$ $H_{2}$ will be conserved quantities If $narrow n-1$ $u_{n-1}u_{n}(u_{n-1}+u_{n})+h_{1}u_{n-1}u_{n}+h_{2}(u_{n-1}+u_{n})+1$ $=$ 0 (4)

$I_{2} \frac{d\omega_{\sim}}{dt}$ $\frac{d\gamma_{1}}{dt}$ $\frac{d\gamma_{2}}{dt}$ $\frac{d\gamma_{3}}{dt}$ 170 6 Solve the $\mathrm{e}\mathrm{q}\mathrm{s}$ $(3)$ and (4) for $H_{1}$ $H_{2}$ $\mathrm{q}$ in $H_{1}$ $=$ $\frac{-u_{n}^{3}-u_{n}^{2}u_{n-1}-u_{n}^{2}u_{n+1}-u_{n-1}u_{n}u_{n+1}+1}{u_{n}^{2}}$ (5) $H_{2}$ $=$ $\frac{u_{n-1}u_{n}u_{n+1}-1}{u_{n}}$ (6) 7 Using the eq(l) we eliminate $u_{n-1}$ in $\mathrm{e}\mathrm{q}\mathrm{s}$ $\mathrm{q}$ $(5)-(6)$ over $H_{1}$ $=$ $- \frac{u_{n-1}u_{n}(u_{n-1}+u_{n})+\alpha(u_{n-1}+u_{n})+1}{u_{n-1}u_{n}}$ (7) $fi_{2}$ $\alpha$ $=$ $(8)$ 8 Using the eq(l) we can check $H_{1}$ is the conserved quantity in Q $\mathrm{q}$ $\mathrm{f}_{\mathrm{p}}$ Support [4] Rank 2 check 0 22 Lagrange 221 $I_{1} \frac{\ J_{1}}{dt}$ $=$ $(I_{2}-I_{3})\omega_{2}\omega_{3}+z_{0}\gamma_{2}-y_{0}\gamma_{3}$ $=$ $(I_{3}-I_{1})\omega_{3}\omega_{1}+x_{0}\gamma_{3}-z_{0}\gamma_{1}$ $I_{3} \frac{\ J_{3}}{dt}$ $=$ $(I_{1}-I_{2})\omega_{1}\omega_{2}+y_{0}\gamma_{1}-x_{0}\gamma_{2}$ $=$ $\omega$3 $\gamma 2-\omega$ 2 $\gamma$3 $=$ $\omega$1 $\gamma 3-\omega$ 3 $\gamma$1 $=$ $\omega$2 $\gamma 1-\omega$ 1 $\gamma$2 )A $=Bx_{0}=y_{0}=0$ (Euler )x0 $=y_{0}=z_{0}=0$ (Lagrange (Kovalevskaya )A $=B=2C$ $z_{0}=0$ Lagrange 222 Lagrange $\mathrm{g}$ } $ 1 $*$ $*^{\backslash $H_{1}= \frac{1}{2}(a\omega_{1}^{2}+a\omega_{2}^{\mathit{2}}+c\omega_{3}^{2})+z_{0}\gamma_{3}$ 2 $H_{2}=A\omega_{1}\gamma_{1}+A\omega_{2}\gamma_{2}+C\omega_{3}\gamma_{3}$

171 3 $H_{3}=\gamma_{1}\prime 2+\gamma_{2}^{2}+\gamma_{3}^{2}$ 4 4 $H_{4}=C\omega_{3}$ Lagrange 0 M $=1$ Jacobi 4 223 $\omega_{1}=\frac{g_{1}}{f}\omega_{2}=\frac{g_{2}}{f}\omega_{3}=\frac{g_{3}}{f}$ $\gamma_{1}=\frac{g_{4}}{f}$ $\gamma_{2}=\frac{g_{5}}{f}\gamma_{3}=\frac{g_{6}}{f}$ $I_{1}D_{t}g_{1}\cdot f$ $=$ $(I_{1}-I_{3})g_{2}g_{3}+z_{0}g_{5}f$ (9) $I_{1}D_{t}g_{2}\cdot f$ $=$ $(I_{3}-I_{1})g_{3}g_{1}-z_{0}g_{4}f$ (10) $I_{3}D_{t}g_{3}\cdot f$ $=$ 0 (11) $D_{t}g_{4}\cdot f$ $=$ $g_{3}g_{5}-g_{2}g_{6}$ (12) $D_{t}g_{5}\cdot f$ $=$ $g_{1}g_{6}-g_{3}g_{4}$ (13) $D_{t}g_{6}\cdot f$ $=$ $g2\mathit{9}4-g1\mathit{9}5$ (14) $D_{t}$ $D_{t}g\cdot f=g_{x}f-\mathit{9}f_{x}$ $h$ $g_{i}arrow h(t)g_{i}$ $farrow h(t)f$ $(9)-(14)$ $(9)-(14)$ $f^{t+1}=f(t+\delta)$ $I_{1}(g_{1}^{t+1}f^{t}-g_{1}^{t}f^{t+1})/\delta$ $=$ $(I_{1}-I_{3})(g_{2}^{t+1}g_{3}^{t}+g_{2}^{t}g_{3}^{t+1})/2+z_{0}(g_{5}^{t\dotplus 1}f^{t}+f^{t+1}g_{5}^{t})/\underline{9}$ $I_{1}$ $(g_{2}^{t+1}f^{t}-g_{2}^{t}f^{t+1})$ / $\delta$ $=$ $(I_{3}-I_{1})(g_{3}^{t+1}g_{1}^{t}+g_{3}^{t}g_{1}^{t+1})/2-z_{0}(g_{4}^{t+1}f^{t}+f^{t+1}g_{4}^{t})/9\sim$ I3 $(g_{3}^{t+1}f^{t}-g_{3}^{t}f^{t+1})/\delta$ $=$ 0 $(g_{4}^{t+1}j^{t}-g_{4}^{t}f^{t+1})/\delta$ $=$ $(g_{3}^{t+1}g_{5}^{t}+g_{3}^{t}g_{5}^{t+1})/2-(g_{2}^{t+1}g_{6}^{t}+g_{2}^{t}g_{6}^{t+1})/2$ $(g_{5}^{t+1}f^{t}-g_{5}^{t}f^{t+1})/\delta$ $=$ $(g_{1}^{t+1}g_{6}^{t}+g_{1}^{t}g_{6}^{t+1})/2-(g_{3}^{t+1}g_{4}^{t}+g_{3}^{t}g_{4}^{t+1})/2$ $(g_{6}^{t+1}f^{t}-\mathit{9}_{6}^{t}f^{t+1})/\delta$ $=$ $(g_{2}^{t+1}g_{4}^{t}+g_{2}^{t}g_{4}^{t+1})/2-(g_{1}^{t+1}g_{5}^{t}+g\mathrm{x}g_{5}^{t+1})/2$ $\deltaarrow 0$ $h^{t}$ $g_{\dot{l}}^{t}arrow h^{t}g_{\dot{\iota}}$ ${}^{t}f^{t}arrow h^{t}f^{t}$ (15)-(15)

$-\gamma_{3}^{t}$ 0 1 $\gamma_{2}^{t}$ $-\gamma_{1}^{\mathrm{t}}$ $-\omega_{2}^{t}$ $\omega_{1}^{t}$ 1 $\gamma_{3}^{t}$ 0 $\gamma_{3}$ $\mathrm{t}+1$ $\omega_{2}^{t-1}\gamma_{1}^{t-1}\gamma_{2}^{t-1}$ $\mathrm{x}3$ $= \frac{g_{6}^{t}}{f^{t}}$ $\gamma_{3}^{t}$ 172 $\omega_{1}=\frac{g_{1}^{t}}{f^{t}}$ $\omega_{2}=\frac{g_{2}^{t}}{f^{t}}\omega_{3}=\frac{g_{3}^{t}}{f^{l}}$ $\mathrm{x}[]=\frac{g_{4}^{t}}{f^{t}}\gamma_{2}=\frac{g_{5}^{t}}{f^{t}}$ Lagrange $I_{1}(\omega 1" 1-\omega\{ )/\delta$ $=$ $(I_{1}-I_{3})(\omega_{2}^{t+1}\omega_{3}^{t}+\omega_{2}^{t}\omega_{3}^{t+1})/2+z0(\gamma_{2}^{t+1}+\gamma_{2}^{t})$ /2 $I_{1}$ $(\omega_{2}^{t1}"-\wedge )/\delta$ $=$ $(I_{3}-I_{1})(\omega_{3}^{t+1}\omega_{1}^{t}+\omega_{3}^{t}\omega_{1}^{t+1})/2-z_{0}(\gamma_{1}^{t+1}+\gamma_{1}^{t})/2$ $I_{\delta}$ $(\omega_{3}^{t1}"-\omega_{3}^{t})/\delta$ $=$ 0 $(\gamma\}" 1-\gamma_{1}^{t})/\delta$ $=$ $(\omega_{3}^{t+1}\gamma_{2}^{t}+\omega\sim\gamma_{2}^{t1}")$/2-( $\omega$r$1ttt 1\gamma_{3}+\omega_{2}\gamma_{3}$ ) $/2$ $(\gamma 4\dagger 1-\gamma 4)/\delta$ $=$ $(\omega_{1}^{t+1}\gamma_{3}^{t}+\omega_{1}^{t}\gamma_{3}^{t+1})/2-(\omega_{3}^{t+1}\gamma_{1}^{t}+\omega_{3}^{\mathrm{t}}\gamma_{1}^{t+1})$/2 $(\gamma_{3}^{t+1}-\gamma_{3}^{t})/\delta$ $=$ $(\omega_{2}^{t+1}\gamma_{1}^{t}+\omega_{2}^{t}\gamma_{1}^{t+1})/2-(\omega_{1}^{t+1}\gamma_{2}^{t}+\omega_{1}^{t}\gamma_{2}^{t+1})$ /2 $arrow\frac{2}{\delta}\omega_{i}^{t}$ $c=\omega_{3}^{t}$ $a= \frac{c(i_{1}-i_{3})}{i_{1}}$ $z= $\omega$h \frac{z_{0}\delta^{2}}{4i_{1}}$ $-\omega_{1}^{t}$ \mbox{\boldmath $\omega$} $=$ $a(\omega_{2}^{t+1}+\omega_{2}^{t})+z(\gamma_{2}^{t+1}+\gamma_{2}^{t})$ (15) $\omega_{2}^{t+1}-u)2t$ $=$ $-a(\omega_{1}^{t}+\omega_{1}^{t+1})-z(\gamma_{1}^{t+1}+\gamma_{1}^{t})$ (16) $\gamma_{1}^{t+1}-\gamma_{1}^{t}$ $=$ $c(\gamma_{2}^{t}+\gamma_{2}^{t+1})-(\omega_{2}^{t+1}\gamma_{3}^{t}+\omega_{2}^{t}\gamma_{3}^{t+1})$ (17) $\gamma_{2}^{t+1}-\gamma_{2}^{t}$ $=$ $(\omega_{1}^{t+1}\gamma_{3}^{t}+\omega_{1}^{i}\gamma_{3}^{t+1})-c(\gamma_{1}^{t}+\gamma_{1}^{t+1})$ (18) $\gamma_{3}^{t+1}-\gamma_{3}^{t}$ $=$ $(\omega^{t+1}\underline\gamma_{1}^{t}+\omega_{2}^{\mathrm{t}}\gamma_{1}^{\mathrm{t}+1})-(\omega_{1}^{\mathrm{t}+1}\gamma_{2}^{t}+\omega_{1}^{t}\gamma_{2}^{t+1})$ (19) 1 $-a$ 0 $-z$ 0 $a$ 1 $z$ 0 0 $\omega\{+1\backslash$ $\omega_{2}^{t+1}$ $\omega 1+a$ $2t+z\gamma$4 $-a\omega_{1}^{t}+\gamma_{2}^{t}-z\gamma_{1}^{t}$ $\{$ 0 $\gamma_{3}^{t}$ $c$ $-c$ $\omega_{2}^{t}$ 1 $-\omega_{1}^{t}$ $\{$ $\gamma_{1}^{t+1}$ $\gamma_{2}^{t1}$ $=$ $\{$ $\gamma_{1}^{t}+\eta_{2}^{t}$ $-\eta_{1}^{t}+\gamma$4 (20) $\{$ 1a 0 $z$ 0 $-a1$ -z0 0 0 $-\gamma_{3}^{t}$ $-\gamma_{-}^{i}$ $\gamma${ I $c$ -4 $\omega$ -c1 i $\omega_{2}^{t}$ $-\omega$ 11 / $\{$ $\omega$ 1-1 $\gamma_{3}^{t-1}$ $=$ $(\begin{array}{l}\omega_{1}^{t}-a\omega_{2}^{t}-z\gamma_{2}^{t}a\omega_{1}^{t}+\gamma_{2}^{t}+z\gamma_{1}^{t}\gamma_{1}^{t}-c\gamma_{2}^{t}\eta_{1}^{t}+\gamma_{2}^{t}\gamma_{3}^{t}\end{array})$ (21) 23 Lagrange $c=\omega_{3}^{t}$ 3 (3)

$H_{\tilde{3}}$ $\ovalbox{\tt\small REJECT}$ 173 1 $H_{1}^{0}$ $=$ $(\omega_{1}^{t})^{2}+(\omega_{2}^{t})^{2}-h_{1\gamma_{3}}^{1t}-h_{1}^{2}(\gamma_{3}^{t})^{2}$ (22) 2 $=$ $(\omega_{1}^{t}\gamma\{+\omega_{2}^{t}\gamma_{2}^{t})-h_{2}^{1}\gamma_{3}^{t}-h_{2}^{2}(\gamma_{3}^{t})^{2}$ (23) 3 $H_{3}^{0}$ $=$ $(\gamma_{1}^{t})^{2}+(\gamma_{2}^{t})^{2}-h_{3}^{1}\gamma_{3}^{t}-h_{3}^{2}(\gamma_{3}^{t})^{2}$ (24) $H_{1}^{0}$ $H_{1}^{1}$ $H_{1}^{2}$ $H_{2}^{0}$ $H_{2}^{1}$ $H_{2}^{2}$ $H_{3}^{0}$ $H_{3}^{1}$ $H_{3}^{2}$ 3 $H_{1}^{0}$ $H_{1}^{1}$ $H_{1}^{2}$ $H_{2}^{0}$ $H$ J $H_{2}^{2}$ (24) $H_{3}^{0}$ $H_{3}^{1}$ $H_{3}^{2}$ $H_{3}^{0}$ $=$ $(\gamma_{1}^{t+1})^{2}+(\gamma_{2}^{t+1})^{2}-h_{3\gamma_{3}-}^{1t+1}h_{3}^{2}(\gamma_{3}^{t+1})^{2}$ (25) $H_{3}^{0}$ $=$ $(\gamma_{1}^{t})^{2}+(\gamma_{2}^{t})^{21t}-h_{3}\gamma_{3}-h_{3}^{2}(\gamma_{3}^{t})^{2}$ (26) $H_{3}^{0}$ $=$ $(\gamma_{1}^{t-1})^{2}+(\gamma_{2}^{t-1})^{2}-h_{3}^{1}\gamma_{3}^{t-1}-h_{3}^{2}(\gamma_{3}^{t-1})2$ $(27)$ (25)-(27) $H_{3}^{0}$ $H_{3}^{1}$ $H_{3}^{2}$ $=$ $((\gamma_{3}^{t+1}-\gamma_{3}^{t})((\gamma_{1}^{t-1})^{2}+(\gamma_{2}^{t-1})^{2})-(\gamma_{3}^{t-1}-\gamma_{3}^{t})((\gamma_{1}^{t+1})^{2}+(\gamma_{2}^{t+1})^{2})+$ $(\gamma_{3}^{t-1}-\gamma_{3}^{t+1})((\gamma_{1}^{t})^{2}+(\gamma_{2}^{t})^{2}))/((\gamma_{3}^{t-1}-\gamma_{3}^{t+1})(\gamma_{3}^{t-1}-\gamma_{3}^{t})(\gamma_{3}^{t+1}-\gamma_{3}^{t}\cdot \mathrm{i})$ (28) (20)(21) (28) $\gamma_{1}^{t+1}\gamma_{2}^{t+1}\gamma_{3}^{t+1}\gamma_{1}^{t-1}\gamma_{2}^{t-1}\gamma_{3}^{t-1}$ $H_{3}^{A}=h_{3}^{2}(\omega_{1}^{t}\omega_{2}^{t}\gamma_{1}^{t} \gamma_{2}^{t}\gamma_{3}^{t} a c z)$ (29) (29) (15)-(19) (29) 0 3 $H_{1}^{1}$ $=$ $\frac{2z(1+ac)}{1+a^{2}}h_{3}^{2}$ (30) $H_{1}^{2}$ $=$ $\frac{z^{\mathit{2}}}{1+a^{2}}h_{3}^{2}$ (31) $H_{2}^{2}$ $=$ $\frac{-az}{1+a^{2}}h_{3}^{2}$ (32) $H_{2}^{0}$ $=$ $\frac{2(a^{2}c^{2}-1)h_{3}^{2}+z(1-ac)h_{3}^{1}-2a^{2}h_{1}^{0}-2(1+a^{2})}{2az}$ (33) $H_{2}^{1}$ $=$ $\frac{2(1+ac-a^{2}-ca^{3})h_{3}^{2}-z(1+a^{2})h_{3}^{1}+2(1+a^{2})}{2a(q+a^{2})}$ (34) $H_{3}^{0}$ $=$ $(-4(1+a^{2})(ac+1)(ac-1)(H_{3}^{2})^{2}+4a^{2}(1+a^{2})H_{1}^{0}H_{3}^{2}-4z(1+a^{2})H_{3}^{1}H_{3}^{2}$ $-4(a^{2}c^{2}-a^{2}-2)(1+a^{2})H_{3}^{2}+4a^{2}(1+a^{2})H_{1}^{0}+z^{2}(1+a^{2})(H_{3}^{1})^{2}$ $-4z(1+a^{2})H_{3}^{1}+4(1+a^{2})^{2})/(4a^{2}z^{2}H_{3}^{2})$ (35)

$+^{1}) \frac{f(-ab-1(g+1}{\frac{b^{2}a}{f-b}}e$ $+_{\mathrm{c}}^{h}aaa \underline{b}_{\frac{+h}{2}}\mathrm{c}+5\mathrm{c}-\frac{9}{\mathrm{h}}-\underline{1}$ 174 $H^{\frac{9}{3}}$ $H_{0}^{1}$ $H_{3}^{1}$ Jacobi rank [1] 4 3 $\mathrm{b}^{\mathrm{a}}$ discrete integrable system \sim $\mathrm{f}_{\mathrm{p}}$ discrete integrable system Lagrange 31 $A= $ gcd lcm $A= \begin{array}{lll}(b-1)(c-5) (c+5)(f-1) (b-1)h-4)ac(g+f \mathrm{c}^{9_{\sim}}g -1)a(gc(f-b)(c_{d}-2) gb^{2}(c-2) g(f-b)(a+b+h)\end{array} $ lcm gcd $\det(a)=\frac{f(g+1)}{a^{2}c^{2}g(b-1)(c+5)(f-b)(c-2)}\det(a)$ $\det(a)$ $\det(a)$ 32 $A= \begin{array}{ll}3 12 4\end{array} $ $\mathrm{f}_{p}$ 2 mod $3=1$ mod $5=0$ $\mathrm{m}\mathrm{o}\mathrm{d}$ $p \in[-\frac{p-1}{2}\frac{p-1}{2}]$

$c\mathrm{v}$ $\Lambda\prime I$ 175 mod $15=-5$ Hadamard $u_{1}$ $=$ $(m_{11} m_{12} \ldotsm_{1n-1} m_{1n})$ $u_{n}$ $=$ $(m_{n1}m_{n2} \ldotsm_{nn-1}m_{nn})$ $v_{1}$ $=$ $(rn_{11} m_{21} \ldotsm_{n-11}m_{n1})$ $v_{n}$ $=$ ( $m_{1n}m_{2n\cdots\prime}m_{n-1n}$ mnn) $=$ $ \begin{array}{llll}m_{11} m_{12} m_{1n-1} m_{1n}m_{21} m_{2_{\prime}2} m_{2_{\prime}n-1} m_{2_{\prime}n}\cdots \cdots \cdots \cdots\cdots \cdots \cdots \cdots m_{n-11} m_{n-1_{\prime}2} m_{n-1n-1} m_{n-1n}m_{n1} m_{n2} m_{nn-1} m_{nn}\end{array} $ Hadamard $\mathrm{a}\mathrm{b}\mathrm{s}(\lambdai)\leq\min$ ( u $ u_{1} _{2} u_{2} _{2}\ldots $ $n-1$ $ _{2} $u $n _{2}$ $ $ t71 $ _{2} v$ 2 t $ _{2}\ldots $ $n-1$ $ _{2} $v$n _{2}$ ) $=$ $\mathrm{a}\mathrm{b}\mathrm{s}(m)=10$ $\leq$ $\min(\sqrt{10}\sqrt{20} \sqrt{13}\sqrt{17})=$ 14142 $\alpha\not\in[-\frac{p-1}{2}\frac{p-1}{2}]$ $( \frac{p-1}{2})^{2}<(\alpha)^{2}$ $p$ $H^{2} \leq(\frac{p-1}{2})^{2}$ $\mathrm{a}\mathrm{b}\mathrm{s}(a)^{2}\leq H^{2}\leq(\frac{p-1}{2})^{2}<(\alpha)^{2}$

$a_{kk}^{k}a_{ik}^{k}$ 176 $H^{2} \leq(\frac{p-1}{2})^{2}$ $\mathrm{z}$ $p$ 15 $200=H^{2} \leq(\frac{p-1}{2})^{2}=49$ $\mathrm{f}_{p}$ 3 mod $3=1$ mod $5=0$ mod $7=3$ $p$ 105 $200=H^{2} \leq(\frac{p-1}{2})^{2}=2704$ mod $105=10$ $\mathrm{z}$ $\mathrm{a}=10$ (GNU $\mathrm{g}\mathrm{m}\mathrm{i}$) $\mathrm{z}$ fradion froe Gaussian elimination 33 fraction free Gaussian elimination $\mathrm{z}$ $\mathrm{q}$ Gauss fraction free Gaussian elimination fraction free Gaussian elimination Hirota bilinear form Gauss $N\cross N$ $a_{k-1k-1}^{k}$ $A=[$ $a_{k\mathrm{j}}^{k}a_{ij}^{k}$ $]$

$\mathrm{f}_{l^{j}}$ $\backslash \backslash$ 177 laction-free Gauss $\frac{a_{ij}^{k}a_{k1k}^{k^{\wedge}}-a_{ik1}^{k}a_{kj}^{k}}{k-1}$ a $a_{k-1k-1}$ (36) $A_{NN}^{N}$ $a_{ij}^{h}a_{kk}^{k}-a_{1_{1}}^{\iota_{k}}\cdot a_{\dot{k}j}^{k}$ $a_{k-1k-1}^{k-1}$ (36) Hirota bffinear form(jacobi ) 34 $\mathrm{f}_{p}$ Lagrange Lagrange Vandermonde 1 $s_{0}$ $(s_{0})^{2}$ $(s_{0})^{n-1}$ $(s_{0})^{n}$ $b_{0}$ $1$ $s_{1}$ $(s_{1})^{2}$ $(s_{1})^{n-1}$ $(s_{1})^{n}$ $b_{1}$ $\{$ 1 $S_{\underline{9}}$ $(s_{2})^{2}$ $(s_{2})^{n-1}$ $(s_{2})^{n}$ $\{$ $x_{n-1}x_{n}x_{1}x_{0}x_{2}\backslash $ $=($ $b_{2}$ (37) 1 $s_{n-1}$ $(s_{n-1})^{2}$ $(s_{n-1})^{n-1}$ $(s_{n-1})^{n}$ $b_{n-1}$ 1 $s_{n}$ $(s_{n})^{2}$ $(s_{n})^{n-1}$ $(s_{n})^{n}$ / $b_{n}$ $n^{\underline{9}}$ Non-sigulaz [3] [3] floating phi $=\mathrm{i}\mathrm{i}_{j\neq k}(x_{j}-x_{k})$ (38) $\mathrm{f}_{p}$ 0 35 Lagrange Lagrange 2 $f(x y)$ (39) $\text{ }$ $y=0$ fix Lagrange (40)

$\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}=-\sim$ $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{t}=0$ $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}=-2$ $c\mathrm{o}\mathrm{e}\mathrm{f}=0$ $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}=4$ $2\backslash \vee$ $2\backslash \vee$ $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}=2$ 178 $y=1$ $y=2$ $y=0$ $y=1$ $=2$ co $\mathrm{f}=-2$ 1 $0\backslash \prime \text{ }\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}=-2$ 1 $1\backslash$ (41) $\iota$ 0 Lagrange 1 (42) co $\mathrm{f}=0$ 1 2 1 $\Lambda\cdot I$ - 1 2 coef$=-2$ coef $=0$ coef $=0$ (43) \acute 1 sampling data $M$ $W$ $W[k_{0}][k_{1}]\ldots[k_{M-1}]$ $0\leq k_{i}\leq N_{i}$ $(i=0 M-1)$ (44) $k_{0}$ $k_{l\mathfrak{l}i-1}$ Lagrange 4 6 Lagrange $\ldots$ $k_{1}$ $k_{\mathrm{a}i-1}$ $\ldots$ $(N_{0})^{2}\cross N_{1}\ldots N_{M-1}$ 2 $k_{1}$ $W[j][k_{1}]\ldots[k_{M-1}](0\leq i\leq N_{0})$ $k_{1}$ 3 $\ldots$ $k_{\lambda I-1}$ $\mathrm{w}$ Lagrange $(N_{0})^{2}N_{1}\ldots N_{M-1}+N0(N_{1})^{2}\ldots N_{\mathrm{A}I-1}+\ldots+$ N0N1(NM-1)2= $N_{0}N_{1}\ldots N_{M-1}$ $(N_{0}+N_{1}++NM-1)$ (45) $\mathrm{f}_{p}$ 36 $A= \begin{array}{ll}x+y 12 xy\end{array} $

$\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}=3$ $1\backslash \vee$ $\mathrm{c}\mathrm{o}\mathrm{e}=0$ 178 1 $\mathrm{a}\backslash$ 1+2 $1=2$ 1 1+2 $1=2$ 2 t \sim -2 Lagrange $\mathrm{a}\mathrm{a}$ (46) sampling data sampling \iota Hadamard demo fraction $4^{\mathrm{a}}$ free Gaussian elimination 3$ (46) $\mathrm{m}\mathrm{o}\mathrm{d} mod3 (47) (47) Lagrange $F_{3}$ 1 1 mod3 (48) 5$ $\mathrm{m}\mathrm{o}\mathrm{d} (46) $x=0$ $x=1$ $x=2$ $y=0$ $\det=3$ $\det=3$ $\det=3$ $y=1$ $\det=3$ $\det=0$ $\det=4$ $y=2$ $\det=3$ $\det=4$ $\det=4$ mod5 (49) (49) Lagrange $F_{5}$ 1 $\mathrm{m}\mathrm{o}\mathrm{d}^{r}$ (50) (48)(50) 1 1 $\mathrm{c}\mathrm{o}\underline{\mathrm{e}\mathrm{f}=-}2$ (51)

$\mathrm{p}1$ $\overline{v_{2}}$ 180 A $A=-2$ $+x^{2}y+xy^{2}$ (52) sample point $(xy)=(00)$ $(10)$ $(20)$ $(01)$ $(11)$ $(21)$ $(02)$ $(12)$ $(22)$ (53) $\mathrm{f}x$ (52) (46) b $M$ $\partial \mathrm{i}$ $\mathrm{a}i$ 1 sampling data $U$ $U[k_{0}][k_{1}]\ldots[k_{M-1}]$ $0\leq k_{i}\leq N_{i}$ $(i=0 \ldotsm-1)$ (54) $T$ $N_{0}N_{1}\ldots N_{M-1}T^{3}$ (55) $T^{3}\geq N_{0}+N_{1}+$ $+N_{\mathrm{A}\mathrm{f}-1}$ (56) sampling 2 $W$ $\overline{u_{1}}$ $\overline{v_{1}}$ Fp Lagrange $W_{1}=\overline{V_{1}}$ $\overline{v_{1}}$ $\overline{v_{\sim}?}$ 31 $p_{2}$ ] $W_{9}$ W1=W stable 4 stable stable sampling point 37 Lagrange (57) $A=(a_{0}+a_{1}y+a_{2}y^{2})+(a_{3}+a_{4}y+a_{5}y^{2})x+(a_{6}+a_{7}y+a_{8}y^{2})x^{2}$ (58)

$\lceil \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}$ Algebra-Design 181 $a_{8}$ \sim $A= x+y2$ 1y $p\mathrm{i}\mathrm{j}$ $1+2\uparrow\overline{\mathrm{T}}$ total degree total degree 1 $2=3$ 1 i $\mathrm{l}+2f$ $2=3$ 3 $a_{8}=0$ $a_{8}$ Lagrange $ \iota_{8}=0$ $\mathrm{l}\mathrm{a}\mathrm{g}1^{\cdot}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{g}\mathrm{e}$ $f\gamma$ of $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$and Lagrange $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\rfloor$ 38 Timing data Timing $\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}$ [1] Kinji Kimura and Ryogo Hirota: Discretization of the Lagrange Top Journal of the Physical $\mathrm{i}\mathrm{o}$ $\mathrm{o}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{b}\mathrm{e}\mathrm{r}2000$ Society of Japan V0169 No 3193-3199 [2] 2 (1971) $\mathrm{p}\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{u}\mathrm{n}\mathrm{e}\mathrm{y}\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ [3] William HPress Saul ATeukolsky William TVetterling and Brian $\mathrm{c}$ Recipes in CAMBRIDGE UNIVERSITY PRESS [4] Rokko lectures in Mathematics