Colaprete and Toon , 212 K, 6.2 mbar,.,, 38 (Carr, 1986; Pollack et al., 1987).,, 25% (Gough, 1981)., CO 2. CO 2 CO 2. Pollack et al. (1987

Similar documents
mars-cloud_2007_DMseminar-pub.ppt

The faint young Sun paradox Early Mars ( Ga) on Mars wet and warm climate? Valley networks(carr, 1996) The warm climate cannot be sustained (Ka

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

mains.dvi

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

1: : Voyager 1 : Keck 1) : 2) 10 1( ) 15 1/3 50% 3) 1990 adaptive optics ( )

Abstract Mars is one of the most plausible terraforming target since there are many similarities between Mars and Earth To evaluate the environment of

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

森羅万象2018のコピー


(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

The Physics of Atmospheres CAPTER :

GNSS satellite or Quasar 10m [5] (n 1) 10 6 = K 1 ( P d T ) + K 2( P v T ) + K 3( P v T 2 ) (2) O 1 S G Earth Atmosphere [4] (ray bending) 1 S

Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, ( 1). Sp dig subsolar point equator 2.7 dig Np Sun V

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

SFN

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

ライトカーブ観測から何がわかるか

太陽系外惑星探査

系外惑星大気

系外惑星大気

(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

No pp The Relationship between Southeast Asian Summer Monsoon and Upper Atmospheric Field over Eurasia Takeshi MORI and Shuji YAMAKAWA

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

untitled

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

. km. km. km

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

km 100 m/s moving flame Schubert and Whitehead,1969 Thompson Thompson,1970 Fels Lindzen 1974 Gierasch Gierasch, ,

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

charpter0.PDF

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

(2010 Sep April) Titan s global crater population: A new assessment Neish & Lorenz, PSS in-press Distant secondary craters from Lyot crater, Mar

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

nsg02-13/ky045059301600033210

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

hPa ( ) hPa

総研大恒星進化概要.dvi

20 12,, 59 q r Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol

untitled

Microsoft Word - GPS2017.docx


¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

untitled


スライド 1

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


Hohenegger & Schär, a cm b Kitoh et. al., Gigerenzer et. al. Susan et. al.

LLG-R8.Nisus.pdf

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

2013SuikoMain.dvi

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

Contents 1 Jeans (

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

note1.dvi

untitled

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

薄膜結晶成長の基礎2.dvi

農林業における野生獣類の被害対策基礎知識

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

RTM RTM Risk terrain terrain RTM RTM 48

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

KENZOU Karman) x

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch



(Jackson model) Ziman) (fluidity) (viscosity) (Free v

MTI-HandBook [ : ( ) ] 1 ( km) GPS ( ) GPS Kelley [1989] [2002] 18 MTI c Mesosphere Thermosphere Ionosphere (MTI) Research Group, Japan 2 Rayl

FU-20α2無停電電源装置取扱説明書

Microsoft Word - 15.宮崎貴紀子

() ( 2 1)90 (2010) ( 1) QIAGEN DNeasy Blood & Tissue Handbook FAVORGEN Tissue Genomic DNA Extract

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

<30345F90BC96EC90E690B65F E706466>

「磁石」としての「惑星」

Hal B. MARING Robert A. DucE** ** Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, U. S. A. 1) J. E. Lovelock, R.

橡

™}flg.book

基礎地学

PowerPoint Presentation


1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

理論懇2014

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Transcription:

Colaprete and Toon 2003 4 16 4, 212 K, 6.2 mbar,.,, 38 (Carr, 1986; Pollack et al., 1987).,, 25% (Gough, 1981)., CO 2. CO 2 CO 2. Pollack et al. (1987) 1,. 75%, 5 bar CO 2. Kasting (1991) CO 2 1,. Pollack et al. (1987), CO 2. CO 2 Pollack et al. (1987), CO 2, ( 7 ). CO 2, CO 2, CO 2. 70% 1.5 bar, 214 K., CO 2,. Forget and Pierrhumbert (1997) CO 2. CO 2,,. CO 2 2 bar 10 µm, 4, CO 2 273 K ( 7 ).

Colaprete and Toon 2003 4 17 Mischna et al. (2000) Forget and Pierrhumbert (1997),. (τ > 10),,. 7: 1. Pollack et al. (1987), Kasting (1991), Forget and Pierrhumbert (1997)., CO 2 2 bar, 75 %., CO 2.

Colaprete and Toon 2003 5 18 5, 2 1, 2 3. Haberle et al. (1993) Toon et al. (1989) 8., CO 2 ( ), H 2 O,. CO 2. CO 2 Hansen (1997a, 1997b), Ockert-Bell (1997), Clancy et al. (1995) 9,.,, 10. 5.1,, Haberle et al. (1993).. K = k 0 + K t, k 0 = 10 2 m 2 sec 1, K t Mellor and Yamada (1974) 11 2.,. Ri θ βg z ( u z ) 2 (18) 8. Haberle et al. (1993),. 9 Clancy et al. (1998), Clancy et al. (1995). 10, Toon et al. (1988), Toon et al. (1989). 11 Mellor, G. L., and Yamada, T., 1974: A hierarchy of turbulent closure models of for planetary boundary layer, J. Atmos. Sci., 31, 1791 1806.

Colaprete and Toon 2003 5 19. θ 12, u, β, g. u z, 5 m sec 1 km 1. (Arya et al., 1988 13 ). K ( ) θ = C z d U s (T s T g ) z=0, U s, T s, T g, C d 14. 5.2 Toon et al. (1989) 2. 2 40 35000 cm 1 60, k. u,. N T (u) = g i exp( k i u). (19) i=1 N, g i k i., N 1 T (u 1, u 2 ) = g i exp( k i u 1 ) g j exp( k j u 2 ) (20) i=1. N 1 N 2. η, k w (Mlawer et al., 1997;Sun and Rikus, 1999). η = N 2 j=1 u 1 u 1 + fu 2, (21) k w (u 1, u 2 ) = ηk 1 + (1 η)k 2. (22) 12 θ T p p 0, ( p θ = T. c p. 13 Arya, S. P., 1988: Introduction to micrometeorology, Academic Press, 303 pp. 14 C d Ri. U s,. p 0 ) c p R

Colaprete and Toon 2003 5 20 f 2. N 1 T (u 1, u 2 ) = g i exp( k w u mix ) (23) i=1, u mix = u 1 + fu 2 (24). u 1, u 2 CO 2 H 2 O, (23) (20) 8. ν = 3580 cm 1. η 0.1 2%. η < 0.1, H 2 O, 5 10%. H 2 O, η 0.95. 850 1200 cm 1 H 2 O, k H2 O = p2 H 2 O RT C s (25) (Thomas and Nordstrom, 1985). p H2 O H 2 O, C s. C s = C v C T, C v = 1.25 10 22 + 1.67 10 19 exp( 2.62 10 13 ν), (26) C T = exp[1800(1/t 1/196)]. CO 2 Kasting et al.(1984).. τ Ray = (8.64 9/ν 4 )(1.0 + 0.0113/ν 2 + 0.00013/ν 4 ) P. (27) P. 60, 1.5 km. CO 2 0.5 bar,. 1,.

Colaprete and Toon 2003 5 21 2: No. (10 21 cm) 1-8 40 440 H 2 O, 32.98 9 440 495 H 2 O, 1.20 10 495 545 11 545 617 CO 2, 14.4 12 617 667 13 667 720 CO 2, 826.0 14 720 800 CO 2, 18.5 15 800 875 16-25 875 1750 CO 2, 15.1 26-29 1750 2050 CO 2, 22.1 30-31 2050 2200 32-33 2200 2397 CO 2 1046.5 34-35 2397 3087 CO 2, H 2 O 0.3, 1.5 36-38 3087 3760 CO 2, H 2 O 55.0, 92.43 39-42 3760 4950 H 2 O 0.02 43-55 4950 15000 CO 2, H 2 O 3.5, 750.0 56-60 15000 35000

Colaprete and Toon 2003 5 22 8: (23) (20). ν = 3580 cm 1. η = 0.9 6.6%. CO 2 0.5 bar.

Colaprete and Toon 2003 6 23 6 3. 3: (m) 0.95 0.35 (λ = 0.65 µm) 0.22 (Wm 2 ) 112.5 (Wm 2 sec 1/2 K 1 ) 145.0 (λ = 0.65 µm) 0/0.25 H 2 O 50/100 CO 2 (bar) 0.5/1/2/5 6.1 CO 2, CO 2, CO 2 F T OA = (F S+IR ( T OA, cloudy) F S+IR ( T OA, clear)), (28) F SF C = (F S+IR ( SF C, cloudy) F S+IR ( SF C, clear)). (29).. 17 km. 5 µm F T OA, F SF C ( 9). 10 µm, τ = 10 F T OA, F SF C ( 9). τ > 40 F SF C ( 9).,,. 10. 25.5 km, 10, 10 µm. F T OA > 0.

Colaprete and Toon 2003 6 24 9: CO 2. CO 2 17 km,.

Colaprete and Toon 2003 6 25 10: 2 bar CO 2. (a) (b), (c) (d). 25.5 km, 10, 10 µm. 6.2,.,,,. 11 CO 2 2 bar. H 2 O 50%. 6.2.1..,.,. CO 2

Colaprete and Toon 2003 6 26 11: CO 2 2 bar. H 2 O 50%.,.. CO 2.

Colaprete and Toon 2003 6 27 2 bar, 1 µm, 100.,, ρu 2,., (10 40 km),., 1.0 µm, 1.8. 15 km, λ = 0.65 µm 0.25, 10 cm 3. H 2 O 50%. F T OA, F SF C ( 12).. τ > 0.1 ( 13). ( 14).,,. 12: F T OA, F SF C. 9. CO 2 17 km, 10 µm, 0.25.

Colaprete and Toon 2003 6 28 13: 5.,. CO 2 2 bar. τ 3.0 1.0, τ > 0.1 52% 40%. 14:.,. CO 2 2 bar.

Colaprete and Toon 2003 6 29 6.2.2 H 2 O H 2 O. H 2 O,. H 2 O 50%, H 2 O 10 K., CO 2, CO 2. 50% 100%,, CO 2 ( 15)..,, H 2 O,. 15:. H 2 O 100%, 50%. CO 2 2 bar., 5 K.

Colaprete and Toon 2003 6 30 6.2.3 CO 2 CO 2. H 2 O 50%, 0.25., 10 km. 10 km., 0.5 bar 20 km, 5 bar 40 km ( 16)., CO 2 (Kasting, 1991) ( 17)., Forget and Pierrhumbrt (1997) Mischna et al. (2000), 273 K. 1 bar ( 18). 1 bar, CO 2, 1 bar. 1 bar, 2. CO 2 (τ > 10), CO 2 H 2 O. H 2 O, CO 2, CO 2.

Colaprete and Toon 2003 6 31 16:. 150. 0.5 bar, 1.0 bar, 2.0 bar, 5.0 bar.

Colaprete and Toon 2003 6 32 17:. 5 bar, 2.0 bar, 1.0 bar, 0.5 bar. CO 2. 18: CO 2.

Colaprete and Toon 2003 7 33 7 Arya, S. P., 1988: Introduction to micrometeorology, Academic Press, 303 pp. Bell J. F. III., Calvin, W. M., Ockert-Bell, M. E., Crisp, D., Pollack, J. B., 1996: Detection and monitoring of H 2 O and CO 2 ice clouds on Mras, J. Geophys. Res., 101, E04, 9227 9237. Briggs, G. A., and Leovy, C. B., 1974: Mariner 9 observations of the Mars north polar hood, Bull. Amer. Meteorol. Soc., 55, 278 296. Carr, M. H., 1986: Mars: A water rich planet?, Icarus, 56, 187 216. Clancy, R. T., and Sandor, B. J., 1998: CO 2 ice cloud in the upper atmosphere of Mars, Geophys. Res. Lett., 25, 489 492. Clancy, R. T., Lee, S. W., Gladstone, G. R., McMillian W. W., and Rousch, T., 1995: A new model for Mars atmospheric dust based upon snalysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos, J. Geophys. Res., 100, E03, 5152 5263. Colaprete, A., Toon, O. B., and Magalhães, J. A., 1999: Cloud formation under Mars Pathfinder conditions, J. Geohpys. Res., 104, E04, 9043 9053. Colaprete, A., Haberle, R. M., and Toon, O. B., 2003: Formation of convective carbon dioxide clouds near the south pole of Mars, J. Geohpys. Res., 108, E07, 5081, doi:10.1029/2003je002053. Colaprete, A., and Toon, O. B., 2003: Carbon dioxide clouds in an early dense Martian atmosphere, J. Geophys. Res., 108, E04, 5025, doi:10.1029/2002je001967. Fletcher, N. H., 1958: Size effect in heterogeneous nucleation, J. Chem. Phys., 29, 572. Forget, F., and Pierrhumbrt, R. T., 1997: Warming early Mars with carbon dioxide clouds that scatter infrared radiation, Science, 278, 1273 1276. Glandorf, D. A., Colaprete, A. O., Toon, O. B., and Tolbert, M., 2002: CO 2 snow on Mars and early Mars, Icarus, 160, 66 72. Haberle, R. M., Houben, H. C., Hertenstein, R., and Herdtle, T., 1993: A boundary-layer model for Mars: Comparison with Viking Lander and entry data, J. Atmos. Sci., 50, 1544 1559.

Colaprete and Toon 2003 7 34 Hansen, G. B., 1997a: The infrared absorption spectrum of carbon dioxide ice form 1.8 to 333 µm, J. Geophys. Res., 102, 21569 21587. Hansen, G. B., 1997b: Spectral absorption of solid CO 2 form the ultraviolet to the far-infrared, Adv. Space Res., 20, 1613 1616. Herr, K. C., and Pimentel G. C., 1970: Evidence for solid carbon dioxide in the upper atmosphere of Mars, Scicence, 167, 47 49. Kasting, J. F., Pollack, J. B., and Crisp, D., 1984: Effects of hight CO 2 levels on surface temperature and atmospheric oxidation state of the early Earth, it J. Atmos. Chem., 1, 403 428. Kasting, J. F., 1991: CO 2 condensation and the climate of early Mars, Icarus, 94, 1 13. Kieffer, H. H., Chase, S. C., Miner, E. D., Palluconi, F. D., Münch, G., Neugebauer, G., and Martin, T. Z., 1976: Infrared thermal mapping of the Martian surface and atmosphere: First results, Science, 193, 780 786. Määttänen et al. 2005: J. Geophys. Res., 110, E02002, doi:1029/2004je002308 Mellor, G. L., and Yamada, T., 1974: A hierarchy of turbulent closure models of for planetary boundary layer, J. Atmos. Sci., 31, 1791 1806. Mischna, M. A., Kasting, J. F., Pavlov, A., and Freedman, R., 2000: Influence of carbon dioxide clouds on early Martian climates, Icarus, 145, 546 554. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacona, R. J., Clough, A. A., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, D14, 16663 16682. Ockert-Bell, M. E., Bell, J. F. III., Pollack, J. B., McKay, C. P., and Forget, F., 1997: Absorption and scattering properties of the Martian dust in the solar wavelengths, J. Geophys. Res., 102, E04, 9039 9050. Pruppacher, H. R., and Klett, J. D., 1978: Micriphysics of clouds and precipitation, Reidel, 706 pp. Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K., 1987: The case for a wet, warm climate on early Mars, Icarus, 71, 203 224.

Colaprete and Toon 2003 7 35 Sun, Z., and Rikus, L., 1999: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere, J. Geophys. Res., 104, D06, 6291 6303. Thomas, M. E., and Nordstrom, R. J., 1985: Line shape model for describing infrared absorption by water vapor, Appplied Optics, 24, 3526 3530. Toon, O. B., Turco, R. P., Jordan, J., Goodman, J., and Ferry, G., 1989: Physical processes in polar stratospheric ice clouds, J. Geophys. Res., 94, 11359 11380. Young, J. B., 1993: The condensation and evaporation of liquid droplets at arbitary Knudsen number in the presence of an inert gas, Int. J. Heat Mass Transfer, 36, 2941 2956. Wood, S. E., 1999: Nucleation and growth of CO 2 ice crystals in the Martian atmosphere, Ph. D. dissertation, Univ. of California Los Angeles, Los Angeles, Clif.