Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

Similar documents
š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

XXXXXX XXXXXXXXXXXXXXXX

Microsoft Word - −C−…−gŁš.doc

Microsoft Word - ’V‘é−gŁš.doc

total2010.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

inyectiva.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

< F31332D8B638E FDA8DD E F1292E6A>

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

TOP URL 1

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2011de.dvi

Ò Ö Ø Ñ Ø ÖÓÙÔ ÔÔ Ö Ò Ò Ø ÓÙÖ Ö¹ÅÙ ØÖ Ò ÓÖÑ ÓÒ Ø Ð Ò ÙÖ µ ¾¼½¼ ½¼

34号 目 次


meiji_resume_1.PDF

: , 2.0, 3.0, 2.0, (%) ( 2.

chapter5

Microsoft Word - ’ìfià„GflV‘é“ÄŁ]›¿0909.doc

<4D F736F F D2088CF88F589EF8E9197BF F690EC816A2E646F63>

Note.tex 2008/09/19( )

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

(WP)

< F31332D817992B48DC A8CCB8E9F81458CA28E942E6A7464>

0304_ふじみ野地福_本編_01

Microsoft Word - 99

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000


<4D F736F F D2092B28DB882C982C282A282C42E646F63>

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

08-Note2-web


Microsoft Word - p2-11堀川先生_紀要原稿_ final.doc

main.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

<4D F736F F D BB388E78CA48B B E6338AAA2B92B290AE2B E646F63>

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

30


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

n ( (

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

ii

Acrobat Distiller, Job 128

ロシア人の名前

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

<4D F736F F D2088CF88F589EF8E9197BF816991E596EC927C A2E646F63>

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

<4D F736F F D2088CF88F589EF8E9197BF81698CA28E9490E78DCE816A2D312E646F63>

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

ロシア語ハラショー

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

Z: Q: R: C: sin 6 5 ζ a, b

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

untitled

PTX_QRG_SL5R_T5R_JA_254024A.book

ÊÈÌÊ fêôöôï Ö É É ~ Œ ~ Œ ÈÍÉÆÍ s Ê É Â Ê ÉÉÆÍÇÉ Ê Ê É Ê ÈÍv ÈÍ É ÈÍ Â ÇÍ vèé Ê Ê É ÈÉËÈÆ ÊÌÉ Ê~Æ Ê Ê ÈÍfÆ Ê ÊÉÆÉÊ Ê Ê ÈÍ Ê ÈÉËÈÆ

( ) 1,771,139 54, , ,185, , , , ,000, , , , , ,000 1,000, , , ,000

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

首都圏チェーンストアチラシ出稿状況調査 リニューアル 2014 年 6 Sample 月版版

ƒsnsªf$o;ª ±Ž vf$o; Uûâ éf$o;ê &fgxo2nvô¾c"gõ /R=o^Ô¾C"GÕ ±Ž v Ô)"GÕâésâf$o; évâöá:o2øüîãá ãòá ùô f$ o;ê u%,âô G Ô Õ HÎ ÔµnZÕ Ñì ÔD[n Õ bg(fååøô Õ½ Š3

Gmech08.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

201711grade1ouyou.pdf

s.ren

gr09.dvi

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2 2 1 (LOOKUP ) VLOOKUP(HLOOKUP) JR () 1 2 (S101.xlsx() 1 3 (1) C2) (2) (C3) (3) 2 (C4,C5) (4) (C6,C7) 1.1 (C6) C5 4 C6 C

1 c Koichi Suga, ISBN

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

目論見書

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

¹ ØÙ Ò ØÙÖ Þ º Ð Þ Å Ö Å Ü Ñ ºµ Å ÖÕÙ Ú Ø Ð ÙÑ µº ÖÙØ º ÙÚ Ö À Ø ÓÖ Æ ØÙÖ Ð Ó Å Ñ ÖÓ Ô º ¹ ¼µ ź ÔÓÔÙÐ Ó ÙÑ Ó Ñ Ô Ö Ó Ó ÑÓ Ë º º ÙÑ Ñ Ð Ô Ó ÕÙ ÒØ ÒØÖ

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

構造と連続体の力学基礎

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 印刷原稿富山産業政策集積2.doc

œ 2 É É

„¤‰ƒ‰IŠv‚æ‡S−ª†{“Å‘IB5-97

.w..01 (1-14)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

<4D F736F F D208B7B8DE890BC5F90E096BE8E9197BF5F2D F4390B32E646F63>

有価証券報告書

陦ィ邏・2

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Transcription:

Holton 9.2.2 semigeostrophic 1 9.2.2 semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu + Dt DΘ Dt + w dθ 0 dz = 0, (9.2) = 0, (9.3) = 0, (9.4) b gθ θ 00 = Φ z, (9.5) u x + v + w z D Dt = t + u x + v + w z = 0, (9.6) *1., b, θ 00.,., 2 2.,, y., L x, L y :, U, V :, L x L y, U V 9.4. U 10m s 1, V 1m s 1, L x 1000km, L y 100km *1,, 1 ρ 0 Hp = HΦ., H., θ = Θ(x, y, z, t) + θ 0(z). 25 1 28 ()

Holton 9.2.2 semigeostrophic 2 9.4: x., x y. D/Dt V/L y, Ro V/fL y 1, x, y., ( ) U Du/Dt fv Dv/Dt fu UV/L y fv V 2 /L y fu Ro ( V Ro U 1, V ) 10 2., Du Dt }{{} O(1) fv }{{} O(1) / Dv + fu }{{} Dt O(10 2 ) }{{} O(1) + Φ = 0, (9.2 ) }{{} x O(1) + Φ = 0. (9.3 ) }{{} O(1) (9.3 ) u 1 % Φ. (9.2 ) v., fu g = Φ/, fv g = Φ/ x,, u = u g, v = v g + v a., v g, v a., (9.2), (9.3), (9.4), (9.6) Du g Dt fv a = 0, (9.7) 25 1 28 ()

Holton 9.2.3 3 fu g = Φ, Db Dt + wn 2 = 0, (9.8) v a + w z = 0 (9.9)., (9.7) (9.2) u = u g,. (9.9) (9.6),. (9.8) (9.5)., N N 2 g θ 0 θ 00 z. u g, f u g z = b (9.10)., (9.7) (9.8) *2.,., (v a, w)., D Dt = ( t + u g x + v g + v a + w ) z }{{} ( ) Dg Dt., (6.8),. (9.7),, semigeostrophic *3. 9.2.3 (9.7) (9.10), u g b v a, w. 9.3,.. 6.4.2. *2 semi-geostrophic. *3, Hoskins 1975. 25 1 28 ()

Holton 9.2.3 4 (9.8) y, (9.7) z,, ( ) D b = Q 2 v a b Dt w ( N 2 + b ) z ( D f u ) g = Q 2 + v ( a Dt z z f f u ) g + w b z (9.11) (9.13)., Q 2 = u g b x v g b (9.12), 6.4.2 Q y.,. Q 2,., Q 2 2.. 25 1 28 ()

Ù É ¾ Ù Ù Ú Holton 9.2.3 5 Æz9S U!t lo =^ om Æz9S U = 9SéÌåïµ Ù Þ fbéwú³ž U = Þ 0vMÍÚp Ù UÿC Ú tpo æ æ Ø Ú çée xrw Ot`opV t É ¾ Ú UC\ ËÍe º½½µ Ø 9SéÌåïµx Ë É ¾ qëíe pìt ËÍe º½ µ Ø Þ., Q 2,,. 2 y, z 2, v a = ψ M / z, w = ψ M / (9.14) ψ M., (9.9). (9.11) (9.13), (9.10), (9.14), N 2 s 2 ψ M 2 + F 2 2 ψ M z 2 + 2S 2 2 ψ M z = 2Q 2 (9.15) 25 1 28 ()

Holton 9.2.3 6., N 2 s N 2 + b z, F 2 f ( f u ) g = f M, S2 b (9.16), M fy u g. (9.15) (9.7) (9.8) N 2 2 ψ M 2 + f 2 2 ψ M z 2 = 2Q 2 (9.17)., N f., semigeostrophic N s, S F. N 2 f 2 > 0 (9.17), *4. Q 2 ψ M. 9.1b v g / b/, Q 2., y. semigeostrophic, (9.15), N 2 s F 2 S 4 > 0,. *5, 9.1 *6.. (9.16), 9.5 2 *7.,., semigeostrophic. semigeostrophic,., Q 2, 2, T/ T/.,, semigeostrophic.. *4. *5 9.1, P P F 2 N 2 s S 4, (9.15), P > 0. *6. *7. 25 1 28 ()

¾ Û Æ ¾ ¼ É ¾ ¾» É Þ ¾É ¾ Æ ¾ É ¾ Ú ¾ Ú ¾É ¾ ¾Ë Holton 9.2.3 7 9.5: 2,.,.,. É% Ë% Ø Ø É ¾ U ::pÿc Û Ú ¾ Ú Þ ¾ ¼ Ú Þ UÿC ¾ Ú Þ ¾Ë¾ Ú UÿC É x ¾ pÿc É x Ú ¾ pÿc Ø Ø!=px ÑŸ ÅÌ «s`!=pxƒ tÿc YwÑŸ ÅÌ «QG SG.., w = 0. F 2 v a z. 25 1 28 ()

Holton 9.3 8,. QG,. SG,. QG, SG 1., ( ). 2.,. Q 2. Q 2 (9.15). SG, QG Q 2, Q 2. 9.3,.,,. 2. 9.1.,,,.,,,.,,.,,., 25 1 28 ()

Holton 9.3 9 9.1:. (2.7.3) (7.5.1) Ns 2 > 0 F 2 > 0 x 2.7.3, 7.5.1, θ = θ 0 + Θ, M fy u g.,,.,,, *8., N 2 s /(f M/) *9. 10 4 *10., M θ *11.,, *12. θ y, 7.5.1., z θ., θ, M., M θ 9.5, *8,. *9 δz, δy, D 2 Dt 2 (δz) = N 2 s δz F vδz, (2.52) D 2 δy Dt 2 M = f δy F hδy (7.53)., F v, F h.,., / F v = Ns 2 f M F h.. *10 N 2 s O(10 2 ), f M f 2 O(10 8 ), 10 6. *11,. *12. 25 1 28 ()

Holton 9.3 10 *13., θ M, f( M/) θ < 0 (9.19), θ.,. (9.19) M θ (7.54) *14. (9.19) g( θ/ p),, (4.12) f P < 0 (9.20)., P.,,.,,. (9.19), 9.6 1, 2. y 1, y 2 = y 1 + δy, x, 2 *15.,., δ(ke),.,,,. x,, M 1 = fy 1 u 1 = fy 1 u g (y 1, z), M 2 = fy 2 u 2 = fy 1 + fδy u g (y 1 + δy, z + δz) (9.21)., M 1 = fy 1 + fδy u 1 = M 1, M 2 = fy 1 u 2 = M 2 (9.22) *13. *14 f M ( ) = f f ug > 0 = 0 < 0 (7.54) *15, x,. x,. 25 1 28 ()

Holton 9.3 11 9.6:. 1, 2., M... (9.21), (9.22) M 1, M 2,, u 1 = fδy + u 1, u 2 = fδy + u 2.., δ(ke) = 1 ( u 2 2 1 + u 2 ) 1 ( 2 u 2 2 1 + u 2 2) = fδy(u 1 u 2 + fδy) = fδy(m 2 M 1 ) (9.23) fδy(m 2 M 1 ) < 0, δ(ke),. θ, (δy) 2 > 0 (δy) 2, 1 δy f(m 2 M 1 ) = f δm ( ) M δy = f < 0 (9.19).,., δm = M M δy + z δz θ 25 1 28 ()

Holton 9.3 12. M M, δm = 0 δz, M δy., δm = 0 ( ) ( δz = M )/ ( ) ( M = f u )/ ( ) g ug (9.24) δy z z M., ( ) ( δz = θ )/ ( ) ( θ = f u )/ ( ) g g θ δy z z θ 00 z θ (9.25).,,. (9.25) (9.24) ( ) δz δy M / ( ) ( δz = f f u ) ( g g θ δy θ θ 00 z., (9.16). )/ [ ( ) ] 2 f 2 ug = F 2 Ns 2 z S 4 M θ, ( ) δz δy M / ( ) ( δz = f f u ) / g Ri f 2 = F 2 Ns 2 δy θ S 4 < 1 (9.26) *16., Ri, Ri ( ) / ( ) g θ 2 ug θ 00 z z., u g / = 0,, Ri< 1. (9.26), F 2 N 2 s S 4 < 0. (9.20). 9.1, F 2 N 2 s S 4 = (ρfg/θ 00 ) P (9.27). P,, (9.27),.,.,,,, 9.5 *17. *16, M θ. *17 (Emanuel, 1986). 25 1 28 ()

Holton 9.3 13, F 2 N 2 s S 4 > 0, (9.15).,, Q 2, (9.15).,. y., 2 t 2 ( 2 ψ M z 2 ) + Ns 2 2 ψ M 2 + F 2 2 ψ M z 2 + 2S 2 2 ψ M z = 0 (9.28) F *18., (9.15). F 2 N 2 s S 4 > 0, (9.28)., F 2 N 2 s S 4 < 0, (9.28), *19.. *18. *19. 25 1 28 ()

Holton 9.3 14.,,.,. (9.19), M θ. (9.20),. (9.27). (9.28),. F 2 N 2 s S 4 > 0,, Q 2., Q 2. F 2 N 2 s S 4 < 0, Q 2... 25 1 28 ()

Holton 9.3 13-1 semi-geostrophic, 6 QG 9 semi-geostrophic SG. 6, 9, *20. z, w. f. D g Dt u a x + v a QG SG D g u g Du g = f 0 v a (6.11) Dt Dt = f 0v a (9.7) D g v g p = f 0 u a (6.11) Dt = f 0u g + w z = 0 (6.12) v a + w z = 0 (9.9) D g b Dt + N 2 Db w = 0 (6.13b) Dt + N 2 w = 0 (9.8) u g f 0 z = b D g Dt ( ) b = Q 2 N 2 w ( ) D g u g f 0 = Q 2 + f 2 v a 0 Dt z z u g (3.29) f 0 z = b (6.48) (6.47) D g (9.10) Dt + v a + w z ( ) D b = Q 2 w Dt N 2 v a b w b (9.11) z ( ) D u g f 0 = Q 2 + f 2 v a 0 Dt z z f 0 v a z u g + w b z V g b (6.45a) Q 2 V g b (9.12) v a = ψ M z, w = ψ M v a = ψ M z, N 2 2 ψ M 2 + f0 2 2 ψ M z 2 = 2Q 2 (9.17) SE N 2 2 ψ M 2 + f0 2 + b z 2 ψ M 2 (9.13) w = ψ M (9.14) 2 ψ M z 2 u g 2 ψ M z 2 +2S 2 2 ψ M z = 2Q 2 (9.15) *20 b, b. 25 1 28 ()

Holton 9.3 13-2 9.1 θ, (4.12) ( P (ζ θ + f) g θ ) p., u g, ( ) ug ζ θ =., { ( ) } ( ug P = f g θ ) p θ θ (4.12) (ex9.1.1)., (1.27), θ ( ) ( ) ug ug = + u ( ) g θ θ z z., (ex9.1.1) { ( ) ug P = f + u ( ) } ( g θ g θ ) θ p., *21, (ex9.1.2) { ( ) ug P = f z g θ p = 1 θ ρ z = θ 00 gρ N s 2 z } { θ00 gρ N s 2 ug + θ, 2, { ( ) } ug θ00 P = f gρ N s 2 1 fρ., 2 u g θ z θ θ z = u g z = 1 b f z z ( ) } ( θ 1 z ρ b ( ) θ z ) θ z (ex9.1.2) (ex9.1.3). (9.10). (9.16) F, S, (ex9.1.3). *21 (9.16),. P = θ 00 fgρ F 2 Ns 2 θ 00 fgρ S4 = θ 00 [ F 2 Ns 2 S 4] (ex9.1.4) fgρ N 2 s = N 2 + b z = g θ 00 [θ0 + Θ] = g θ z θ 00 z 25 1 28 ()

Holton 9.3 13-3, δ,., a 2 2 ψ x 2 + c2 2 ψ = δ(x, y) 2 (ap9.15.1)., a, c, δ.,., 2 G, 2 ψ x 2 + 2 ψ = δ(x, y) 2 ψ(x, y) = G(x, y), G(x, y) = 1 ln r, r (x, y) (ap9.15.2) 2π., (ap9.15.1), x = ax, y = cy, 2 ψ X 2 + 2 ψ = δ(ax, cy ) Y 2 (ap9.15.3)., (ap9.15.2) ψ(x, Y ) = 1 2π ln X 2 + Y 2. (ap9.15.4), ψ(x, y) ψ(x, y) = 1 (x ) 2 ( y ) 2 2π ln + (ap9.15.5) a c., x 1/a, y 1/c 1., (1/).,, a 2 2 ψ x 2 + 2b2 2 ψ x + c2 2 ψ = δ(x, y) 2 (ap9.15.6). ( ) / x ( / x, /) A ψ = δ(x, y), / A ( a 2 b 2 b 2 c 2 ) (ap9.15.7) 25 1 28 ()

Holton 9.3 13-4. 2 *22., ( ) λ 2 0 Λ 0 µ 2 A, Λ = R 1 AR., R A, Λ. RΛR 1 = A., (ap9.15.7) ( / x, /) RΛR 1 ( / x / ) ψ = δ(x, y) (ap9.15.8) (ap9.15.9)., ( / X, / Y ) ( / x, /) R, ( / X / Y ) R 1 ( / x / ) *23, (ap9.15.9) ( / X, / Y ) Λ ( / X / Y ) ψ = δ(x, y) (ap9.15.10). λ 2 2 ψ X 2 + µ2 2 ψ = δ(x, y), Y 2 { x = R 11 X + R 12 Y, y = R 21 X + R 22 Y (ap9.15.11)., (ap9.15.11) (X, Y ), X 1/λ, Y 1/µ. (X, Y ) (x, y) R,, ψ., 1.,. 2,.,.,.,, x, y,.,,,. *22, (a 2 c 2 ) 2 + 4b 4 = 0,. *23 R,., 2 1,. 25 1 28 ()

Holton 9.3 13-5 óõ s8 óõ Ü 1:,. 2:,. 25 1 28 ()

Holton 9.3 13-6 3.,,.,.,,. 3:. 4.,,,.,,.,.,,. F (9.15), *24. *24, (9.15). 25 1 28 ()

Holton 9.3 13-7 4:.,.,,., u g = u g (y, z), b = (y, z). 25 1 28 ()

Holton 9.3 13-8 v a = ψ/ z, w a = ψ/ ψ(y, z)., (9.12) Q 2 = 0,,., (9.10) y *25,. z, z Dv a Dt + fu g + Φ = 0 ( ) Dva + f u g Dt z + b = 0. (F.1), (9.11), (9.13) D [ { }] Dva + N 2 2 ψ M s Dt z Dt 2 + F 2 2 ψ M z 2 + 2S 2 2 ψ M z = 0 (9.15 )., Q 2., x, 2, D Dt = t + v a + w a z t., 2 ( 2 ) ψ t 2 z 2 + Ns 2 2 ψ 2 + F 2 2 ψ z 2 + 2S2 2 ψ z = 0. (F.3) (9.28) 2 ( 2 ) ψ M t 2 z 2 + Ns 2 2 ψ M 2 + F 2 2 ψ M z 2 + 2S 2 2 ψ M z = 0 (9.28)., ψ M = A(t)e i(ly+mz)., l, m,, A(t). (9.28), m 2 d2 dt 2 A(t) = [ N 2 s l 2 + F 2 m 2 + 2S 2 lm ] A(t) (ap9.28.1) *25, Q 2,,. 25 1 28 ()

Holton 9.3 13-9., A(t),.., A(t) = e at a 2 [ N 2 s l 2 + F 2 m 2 + 2S 2 lm ] (ap9.28.2) (ap9.28.3)., { a 2 > 0 a 2 < 0,., a 2 a 2 = 1 N 2 s N 4 s {l + S2 N 2 s } 2 m + { Ns 2 F 2 S 4} }{{} ( 1) m 2 (ap9.28.4)., ( 1)., ( 1), a 2 < 0 N 2 s F 2 S 4 > 0 (ap9.28.5) a 2 > 0 N 2 s F 2 S 4 < 0 (ap9.28.6) *26., { F 2 Ns 2 S 4 > 0 F 2 Ns 2 S 4 < 0. *26, (ap9.28.6)., a 2, (ap9.28.4) 1., (ap9.28.6)., Ns 2,,, Ns 2 > 0 F 2 > 0, Ns 2. 25 1 28 ()