Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Similar documents
Twist knot orbifold Chern-Simons

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

2018 : msjmeeting-2018sep-11i001 WKB ( ) Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ- ). 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],.

( ) (, ) ( )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Kaluza-Klein(KK) SO(11) KK 1 2 1

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

SUSY DWs

TOP URL 1

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

『共形場理論』

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

JFE.dvi

201711grade1ouyou.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

コホモロジー的AGT対応とK群類似

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n


Part () () Γ Part ,

TOP URL 1

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

ohpmain.dvi

第1章 微分方程式と近似解法

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

本文/目次(裏白)

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

QMII_10.dvi

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

LLG-R8.Nisus.pdf

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

DVIOUT-fujin

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

untitled

TOP URL 1

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

main.dvi

Einstein ( ) YITP

中央大学セミナー.ppt

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

スケーリング理論とはなにか? - --尺度を変えて見えること--

arxiv: v1(astro-ph.co)

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

gr09.dvi

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

第86回日本感染症学会総会学術集会後抄録(I)

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4


Z: Q: R: C: sin 6 5 ζ a, b

i

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

3 exotica

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

meiji_resume_1.PDF

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


Chap11.dvi



(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

Transcription:

Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0 Jones Jones 3 Chern-Simons Witten [2] 3 S 3 G = SU(2) Chern-Simons S CS [A; S 3 ] = k 4π S 3 tr (A da + 23 A A A ). (3) Chern-Simons 3 K Wilson W R [A; K] Z CS (S 3 ; K R ) = [da]w R [A; K]e is CS[A;S 3]. (4)

R j Witten j = /2 R = Wilson Jones J(K; q) = Z CS (S 3 ; K )/Z SU(2) CS (S 3 2πi ; ), q := e k+2. (5) j- R = (2j) Wilson n Jones J n (K; q) (n = 2j + ) J n (K; q) = Z CS (S 3 ; K (2j) )/Z SU(2) CS (S 3 ; (2j)). (6) Jones n [3, 4] 2π lim n n log J n(k; q = e 2πi n ) = Vol(S 3 \K). (7) Chern-Simons k k + 2 = n Jones 2 2. (7) S 3 \K 3 Thurston 3 S Figure 2: 3 Figure 2 8 4 2

M 3 g ij R ij = 2g ij. (8) Vol(M 3 ) π (S 3 \) =: π (K) 3 3 (8) α, β, γ (α + β + γ = π) 3 AdS 3 2 4 (α, β, γ) 2 0, 3 (shape parameter) Conformal ball model Upper half space model Geodesic Line Conformal Transformation Figure 3: T αβγ AdS 3 [5] Vol(T αβγ ) = Λ(α) + Λ(β) + Λ(γ), (9) Λ(θ) := θ 0 log 2 sin t dt. (0) Λ(θ) Lobachevsky Mosto M 3 π (M 3 ) Vol(M 3 ) 3

2.2 Figure 2 8 4 8 [6, 7] Figure Francis, "A Topological Pictur 4 4 S 3 R 3 8 2 Figure 4: 8 2 4

2. 2 i i = 8 2 =, =. () C A B D A' D' B' C' 2. solid torus 8 2 Meridian µ : = ( ) =. (2) 3 Longitude ν : ( 2 3 ) 2 ( ) 2 ( 2 3 ) 2 = (/) 2 =. (3) C A B D A' B' D' C' 5

8 (), (2), (3) 0 < arg, arg < π = = e πi/3. (4) (9) 2.3 Jones Vol(S 3 \4 ) = 6Λ(π/3)2, 0298832, (5) (7) 8 Jones [8] J n (4, q) = n k=0 j= k (q (n+j)/2 q (n+j)/2 )(q (n j)/2 q (n j)/2 ). (6) n, q = e (n := 2πi) k =: log k d (x; q) k = k i= ( xqi ) e (Li 2(x) Li 2 (x)) [ ] J n (4 ; e 2π /n ) d exp W 4 (), W4 () = Li 2 () + Li 2 ( ), (7) 0 0 = W 4 () = log( )+log( ) = e πi/3 log J n (4 ; q = e 2π /n ) 2π lim = 2Im[Li 2 ( 0 )] = 2, 0298832 = Vol(S 3 \4 ). (8) n n 3 A- 3. Dehn (, 0) (p, q) (p, q) Dehn W.Thurston (p, q) Dehn 3 6

Figure 5: Dehn Dehn x Bulk : ( )( ) = (9) Meridian : ( ) = x (20) Longitude : (/) 2 = (y/x) 2. (2) () Dehn (2) (3) 2 (x, y) 2 (x, y) A 4 (x, y) = y + y (x 2 x 2 x + x 2 ) = 0. (22) A K (x, y) A- SL(2; C) Hom(π (S 3 \K); SL(2; C)) A-x S 3 \K x Vol Chern-Simons CS Vol(S 3 \K x ) + ics(s 3 \K x ) = Vol(S 3 \K) + ics(s 3 \K) + ϕ K (x), (23) x dx ϕ K (x) = log y(x). (24) x ϕ K (x) Neumann-Zagier [9] Chern-Simons 3.2 [0, ] 2π lim n,k log J n (K; q = e 2πi/k ) k = S 0 (K; x) (25) S 0 (K; x) = Vol(S 3 \K) + ics(s 3 \K) + ϕ K (x). (26) 7

x := e 2πin/k K 8 Jones (6) J n (4 ; q) d e W 4 (x,)+o( 0), (27) W 4 (x, ) = Li 2 (x) Li 2 (x) + Li 2 (x ) Li 2 (x ) 2 (log )2 + πi log. (28) W K = 0 = e W 4 (x, 0 )/ = x + x 0 0, (29) = 0 S 0 (4 ; x) W 4 ( 0, x) = S 0 (4 ; x) = Vol(S 3 \4 ) + ics(s 3 \4 ) + ϕ 4 (x), (30) x Neumann-Zagier x S 0(4 ; x) x = log y, y = x 0 x 0, (3) (29) (3) 0 (x, y) (22) A- A 4 (x, y) 8 3.3 WKB Chern-Simons Wilson Chern-Simons [0] AJ [2] Jones q  K (ˆx, ŷ; q)j n (K; q) = 0, ŷˆx = qˆxŷ, (32) ŷf(n) = f(n + ), ˆxf(n) = q n f(n). (33) ÂK(ˆx, ŷ; q) A- q A-  K (x, y; q ) = A K (x, y). (34) 8

8 A- Â 4 (ˆx, ŷ; q) = 3 a j (ˆx; q)ŷ j, (35) j=0 a 0 = t3 ( ˆx)( qˆx)( q 2ˆx 2 )( q 3ˆx 2 ) q 3 ( ˆx)( ˆx 2 )( qˆx)( q ˆx 2 ), a = ( qˆx)( q 3ˆx 2 ) q 3ˆx 2 ( ˆx)( qˆx)( q ˆx 2 ) ( 2qˆx q ( + q 3 q q 2 )ˆx 2 (q + q 2 q 3 )ˆx 3 + 2qˆx 4 q 2ˆx 5), ( q 2ˆx 2 ) a 2 = q 2ˆx 2 ( ˆx 2 )( qˆx) ( 2ˆx + t 2 (q + q 2 q 3 )ˆx 2 + ( + q 3 q q 2 )ˆx 3 + 2q 3ˆx 4 q 3ˆx 5), a 3 =. A- q- ( J n (K; q) exp S 0(K; x) ) 2 δ log + S n+ (K; x) n, (36) WKB [3] Jones n=0 4 Jones [4] [5, 6, 7] A- Eynard-Orantin WKB (36) Jones x x x h x x x xh x x k x i k h i j j q q g = + Σ q g l J g x q l l Figure 6: Eynard-Orantin 9

References [] V. F. R. Jones, Index for Subfactors, Invent. Math. 72 (983) -25; A polynomial invariant for knots via von Neumann algebra, Bull. Amer. Math. Soc. (N.S.) 2 (983) 03; Hecke Algebra Representations of Braid Groups and Link Polynomials, Ann. Math. 26 (987) 335-388. [2] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 2 (3) (989) 35399. [3] R. M. Kashaev, The Hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys. 39 (997) 269. [4] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 86 (200) 85 [math/9905075]. [5] W. Thurston, The geometry and topology of 3-manifolds, Princeton lecture notes (980). Available via MSRI: http://.msri.org/publications/books/gt3m/ [6] [7] 8 http://.iis.ithiroshima.ac.jp/ ohkaa/non-euclidean-8knot/.kcn.ne.jp/ iittoo/japanese.htm [8] K. Habiro, On the colored Jones polynomials of some simple links, no. 72 (2000) 3443. [9] W. D. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (985) 307332. [0] S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A polynomial, Commun. Math. Phys. 255 (2005) 577 [hep-th/030665]. [] H. Murakami and Y. Yokota, The colored Jones polynomials of the figure-eight knot and its Dehn surgery spaces, J. Reine Ange. Math. 607 (2007) 4768. [2] S. Garoufalidis, Difference and differential equations for the colored Jones function, J. Knot Theory. Ramifications, 7 (2008) 49550, arxiv:math/0306229 [math.gt]; [3] T. Dimofte, S. Gukov, J. Lenells and D. Zagier, Exact Results for Perturbative Chern- Simons Theory ith Complex Gauge Group, Commun. Num. Theor. Phys. 3 (2009) 363 [arxiv:0903.2472 [hep-th]]. [4] Y. Terashima and M. Yamaaki, SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls, JHEP 08 (20) 35 [arxiv:03.5748 [hep-th]]; Semiclassical Analysis of the 3d/3d Relation, arxiv:06.3066 [hep-th];t. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, arxiv:08.4389 [hep-th]; 3-Manifolds and 3d Indices, arxiv:2.579 [hep-th]. [5] R. Dijkgraaf, H. Fuji and M. Manabe, The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings, Nucl. Phys. B 849 (20) 66 [arxiv:00.4542 [hep-th]]. [6] M. Aganagic and C. Vafa, Large N Duality, Mirror Symmetry, and a Q-deformed A- polynomial for Knots, arxiv:204.4709 [hep-th]. [7] G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from nonperturbative topological recursion of A-polynomials, arxiv:205.226 [math-ph]. 0