1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,

Similar documents

Substructural Logics Substructural Logics p.1/46

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

DVIOUT

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

lecture

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

1 I

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

ユニセフ表紙_CS6_三.indd

Mathematical Logic I 12 Contents I Zorn

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

v er.1/ c /(21)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

1

「産業上利用することができる発明」の審査の運用指針(案)


2011de.dvi

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


ユニセフ表紙_CS6_三.indd

基礎数学I

6. Euler x

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

CVS Symposium, October 2005 p.1/22


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

201711grade1ouyou.pdf

i

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Microsoft PowerPoint - logic ppt [互換モード]

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

I

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

n ( (

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

ii-03.dvi

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

st.dvi


14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

数学の基礎訓練I


1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

案内(最終2).indd


2000年度『数学展望 I』講義録

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

mugensho.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

DE-resume

TOP URL 1

案内最終.indd


ii

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

数学ノート 2018-



December 28, 2018

A_chapter3.dvi


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.


1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

Transcription:

1 (Naturau Deduction System, N-system) 11,,,,, n- R t 1,, t n Rt 1 t n atomic formula : x, y, z, u, v, w, : f, g, h, : c, d, : t, s, r, : P, Q, : R, : A, B, C, D, 12 A A A A N-system 1 1 N-system N-system Hilbert-style system Gentzen-system 1

(Introduction rules) A B ( I) A B (Elimination rules) A B A ( E r) A B B ( E l) [A] B A B ( I) A A B ( I r) ϕ(x) xϕ(x) ϕ(t) xϕ(x) ( I) ( I) B A B ( I l) A B B A B xϕ(x) ϕ[t/x] xϕ(x) ψ A [A] C C ( E) ( E) [A] C ( E) [ϕ(x)] ψ ( E) 10 A A ( E) [A] ( I) A (minimal logic) P (P Q) P Q, P Q A ( ) ( ) ex falso sequitur quodlibet 2 A A A A ( E) 10 ( ) 11 2 material implication 2

13 N-system N-system Ni 1 [A (B C)] 1 [A] 3 E [A B]2 [A] 3 E B C B E C A C I 3 (A B) (A C) I 2 (A (B C)) ((A B) (A C)) I 1 (A (B C)) ((A B) (A C)) deduction derivation I [A] B A B ( I) (A (B C)) ((A B) (A C)) (A (B C)) ((A B) (A C)) ((A B) (A C)) A B A C A C A C 1 (1) (A B) (B A) (2) (A (B C)) ((A B) C) (3) A A (4) (A B) C (A C) (B C) (5) (A C) (B C) (A B) C (4) (5) (A B) C (A C) (B C) 3

[(A C) (B C)] D (A B) C [(A B) C] D (A C) (B C) (A B) C (A C) (B C) 2( cancellation [A] 1 A A I 1 N-system N-system N-system (scheme) A, B A B A B A A B A, B active A, B Γ D A D B A B D -I 3 Γ A B Γ A B -I Γ B Γ {A} A B 3 Γ 4

A Γ Γ {A} Γ A 2 A A A A [A] A A Γ = {A} Γ A 4 3 [A] B A I 1 A (B A) I 1 -I A A A B A I A (B A) I A B A B vacuous discharge 2 4 (1) -E sequent calculus style (2) 3 B A [A (A B)] 2 [A] 1 E A B [A] 1 E B A B I 1 (A (A B)) (A B) I 2 -I 1 discharge -I sequent style 4 {A} A 5

A (A B)) A (A B) A A A (A B), A A B A A A (A B), A B (A (A B)) (A B) I (A (A B)) (A B) I E 14 1 constant 2 3 t 1,, t n n- f n f n (t 1 t n ) t free variable F V (t) 1 t = a F V (a) = φ, 2 t = x F V (x) = {x}, 3 t = f n (t 1,, t n ) F V (f n (t 1,, t n )) = F V (t 1 ) F V (t n ) A F V (A) 1 F V ( ) = φ, 2 F V (P (t 1 t n )) = F V (t 1 ) F V (t n ), 3 F V (A B) = F V (A B) = F V (A B) = F V (A) F V (B), 4 F V ( xa) = F V ( xa) = F V (A) {x} x t x t [t /x] t x t t[t /x] [t/x] 1 a[t/x] = a, 2 y x y[t/x] = y, y = x y[t/x] = t, 6

3 f n (t 1,, t n )[t/x] = f n (t 1 [t/x],, t n [t/x]) [t/x] 1 [t/x] =, 2 (P n (t 1,, t n ))[t/x] = P n (t 1 [t/x],, t n [t/x]), 3 =,, (A B)[t/x] = A[t/x] B[t/x], 4 y x ( ya)[t/x] = ya(t/x), y = x ( ya)[t/x] = ya 5 y x ( ya)[t/x] = ya(t/x), y = x ( ya)[t/x] = ya [ ] t A x A x t t A y x(y < x) y x y x x(x < x) 5 1z xp (y, x) y 2f(x 0, x 1 ) x 1 P (x 0, x 3 ) x 0 3z P (x, y) xq(x, w) x 1 xa y A[y/x] 2 xa a A[a/x] A(y/x) A(t/x) xa I xa I ( I t 6 ) I 5 x(y < x) y x rename z(y < z) 6 t A x 7

y A(y/x) xa [A(y/x)] xa I A(y/x) A(y/x) A(y/x) [ x ya(x, y)] 1 E ya(x, y) E A(x, y) xa(x, y) I y xa(x, y) I x ya(x, y) y xa(x, y) I 1 I A(x, y) [ x ya(x, y)] x E xa A(t/x) E t 7 E [A(y/x)] n xa C D C E n y C xa [A(y/x)] C [A(y/x)] 7 t xa x x y(x = y) y(y = y) 8

x F V (A) x(a B(x)) (A xb(x)) [ x(a B(x))] 1 E A B(x) [A] 2 E B(x) xb(x) I A xb(x) I 2 x(a B(x)) (A xb(x)) I 1 x F V (B) x(a(x) B) ( xa(x) B) [ x(a(x) B)] 3 E A(x) B [A(x)] 1 [ xa(x)] 2 B E B 1 xa(x) B I 2 x(a(x) B) ( xa(x) B) I 3 E 3 (1) x(a(x) B(x)) xa(x) xb(x), (2) x(a(x) B(x)) ( xa(x) xb(x)), (3) xa(x) A(x), (4) x(a(x) B) xa(x) B, x F V (B) x(x = x) x = x E y(x = y) I occurrences 15 10 (RAA) 9

[ A] A (RAA) ( I) (RAA) ( I) P P (RAA) P P P P [A] 1 A A I [ (A A)] 2 E A I 1 A A I [ (A A)] 2 E A A RAA 2 (A B) (B A) [B] 1 A B I 1 (A B) (B A) I [ ((A B) (B A))] 2 E B A B I 1 (A B) (B A) I [ ((A B) (B A))] 2 E (A B) (B A) RAA 2 x A(x) xa(x) 4 [A(x)] 3 [ xa(x)] 2 xa(x) I E A(x) I 3 [ x A(x)] 1 x A(x) I E xa(x) RAA 2 x A(x) xa(x) I 1 10

(1) xa(x) x A(x), (2) A A, (3) A B ( A B), (4) A ( A B), (5) ((A B) (A B)) A 11

G-system, Sequent Calculus) G-system cancellation -I explicit Γ D A D B A B Γ A B Γ A B G-system Γ A B Γ A B G right rules 8 Γ A B Γ, A B R A, Γ B Γ A B R Γ A Γ A B R 1 Γ B Γ A B R 2 G N-system -E A, Γ C B, C A B, Γ, C 8 R Γ A B Γ, A B R L G1 R Γ, A Γ, B Γ, A B p17 (3) 12

[A] A B C C [B] C ( E) G A, B, Γ C A B, Γ C L Γ A B, C A B, Γ, C A B A E r A B B E l A B B A E A B C A B C C A B resouce A B D 1 D 2 A B A B A B C [A, B] C E C A B L A B A B A B I C [A, B] C E 13

A B A, B C C A B C convert ( A B) Inversion principle A B - A, B A, B C A B C - A B A B C C B C A B A A B A C [B] C E A B [A] B A B I C A [B] C E 14

Ạ Ḅ C L G1 G1 Ax A A (structural rule) LW Γ A, Γ RW Γ Γ, A LC A, A, Γ A, Γ RC Γ, A, A Γ, A LEx Γ, A, B, Λ Γ, B, A, Λ REx Γ, A A, Λ Θ Γ, Λ, Θ Γ, A, B, Λ Γ, B, A, Λ Γ, A Γ, B R Γ, A B L A, B, Γ A B, Γ R A, Γ, B Γ, A B L Γ, A B, Γ A B, Γ, R Γ, A Γ, A B Γ, B Γ, A B L A, Γ B, Γ A B, Γ 15

R A, Γ Γ, A L Γ, A A, Γ LK 9 (1) G- A A A A A A (2) G- (A (A B)) (A B) (A (A B)) (A B) sequent A A B, A B A A A B, A B A (A B), A B A (A B) A B R (A (A B)) (A B) R sequent A A B B B, A B LW LW weakning( Thinning vacuous discharge 5 A A A, B A LW A B A R A (B A) R 9 16

(3) G G1 G1 G1 G1 G1 G1 G1c G1i 10 R Γ A B Γ, A B R Γ Θ, A Ξ, B Γ, Θ, Ξ, A B Γ Delta shared context A Γ B Γ Γ, A Γ, B Γ, A B (4) G1i Γ Γ ϕ Γ Γ - Γ Γ ϕ weakening 10 LK,LJ 17

ϕ, Γ Γ ϕ R -I Γ ϕ ϕ, Γ L -E Γ sequent Γ sequent Γ sequent falsifiable A, Γ Γ, A sequent Γ A A G1c ϕ(t), Γ xϕ, Γ L Γ, xϕ(x) Γ, ϕ(a) R L t R a Γ, a eigenvaliable ϕ(a), Γ xϕ(x), Γ L Γ, ϕ(t) Γ, xϕ(x) R 18

L a Γ, a eigenvariable R t G1c A A A, A L A, A A R A A, A REx A A, A A R RC A A G1c F (a) F (a) F (a) xf (x) R xf (x), F (a) R xf (x), y G(y) R y F (y) xf (x) L y F (y) xf (x) R 1 F (a) F (a) F (a), G(a) F (a) LW G(a) G(a) F (a), G(a) G(a) LW R F (a), G(a) F (a) G(a) F (a), G(a) x(f (x) G(x)) R F (a), xg(x) x(f (x) G(x)) L xf (x), xg(x) x(f (x) G(x)) L xf (x) xg(x) x(f (x) G(x)) L xf (x) xg(x) x(f (x) G(x)) R 2 (1) A B ( A B) (2) ( A B) A B (3) (A B) A B (4) (A B) A B (5) ( A B) ( B A) (6) ( A B) (B A) (7) xf (x) y F (y) (8) yf (y) x F (x) (9) x(a B(x)) (A xb(x)) (10) (A xb(x)) x(a B(x)) (11) x(a(x) B(x)) ( xa(x) xb(x)) 19

G1i G1c sequent Γ G1i A A A A A L A, A A L A A, A A L LC A A (A A) R G1i (1) A B A B (2) A B A (3) A A B (4) A B (A B) (5) (A B) A B (6) A B (A B) (7) (A C) (B C) (A B) C (8) A B B A (9) xf (x) y F (y) (10) x F (x) xf (x) (11) x(f (x) G(x)) xf (x) xg(x) (12) (A B), A B (13) B B, (A B) A B (14) A A (15) A A G3ip( ) G3 P, Γ P ( P ) A, B, Γ C A B, Γ C L Γ A Γ B Γ A B R A, Γ C B, Γ C A B, Γ C L Γ A Γ A B R 1 Γ B Γ A B R 2 20

A B, Γ A B, Γ C A B, Γ C A, Γ B Γ A B R, Γ C L the root first proof search G1 (1) weakning A A P, Γ P P (2) Γ multiset Γ {A, B, C} {A, C, B} multiset {A, B, C} {A, A, B, C} Γ (3) R Γ A B Γ, A B Γ R Γ A Γ B Γ A B Shared context A, B A A, B B R A, B A B A B A B R A (B A B) R 5 (1) (A B) (B A) (2) (A (B C)) ((A B) C) 21

(3) A A (4) (A B) C (A C) (B C) (5) (A C) (B C) (A B) C 5 G3ip A A (3) A ((A ) ) A, A A, A L A, A A (A ) R A ((A ) ) R 6 (1) (A (B C)) ((A B) (A C)) (2) (A B C) ((A C) (B C)) (3) ( A B) (A B) (4) (P P ) (5) (A (A B)) (A B) admissibility G3ip Γ D D, C Γ, C -free system G3ip cut-free G3ip cut cut cut G3ip cut admissible G3ip+cut G3ip cut G3ip conservative extension 22

cut admissibility weight 1 A w(a) 1 w( ) = 0 2 P w(p ) = 1 3 w(a B) = w(a) + w(b) + 1,, w( A) = w(a ) = w(a) + w( ) + 1 = w(a) + 1 2 height L 0 1 C contextγ sequent C, Γ C [ ] C w(c) 1 C = P C = P C = 11 C, Γ C L C = P C =,, Γ L, Γ R w(c) n C C, Γ C w(d) n + 1 D D, Γ D D = A B w(a) n w(b) n A B, Γ A B A, B, Γ A A B, Γ A L A B, Γ A B A, B, Γ B A B, Γ B L R A, B, Γ A A, B, Γ B B, Γ = Γ A, Γ = Γ A, Γ A B, Γ B context 11 23

D = A B w(a) n w(b) n A, Γ A A, Γ A B R B, Γ B 1 B, Γ A B R 2 L A B, Γ A B D = A B A, A B, Γ A B, A, Γ B A, A B, Γ B A B, Γ A B R sequent QED n Γ C sequent Γ C G3ip n 4 Height-preserving weakening D n D, Γ C n Γ C [ ] Base case: n = 0 Γ C L C Γ Γ D, Γ C L Induction base: n height-preserving weakening n Induction step: L Γ = A B, Γ A, B, Γ C A B, Γ C L A, B, Γ C n D, A, B, Γ C n L n + 1 D, A B, Γ C QED 24

5: Inversion lemma (i) (ii) (iii) n A B, Γ C n A, B, Γ C, n A B, Γ C n A, Γ C n B, Γ C, n A B, Γ C n B, Γ C [ ] n (i) A B, Γ C L A B A B context A B, Γ C C C, A B, Γ C A B, Γ context A, B, Γ C L n (i) n+1 A B, Γ C A B A B L A, B, Γ C n A B A B, Γ C A B, Γ C n n A, B, Γ C n A, BΓ C A, B, Γ C n + 1 (ii) (i) A B, Γ C A, Γ C B, Γ C A B L A, Γ C B, Γ C n A B A B, Γ C A B, Γ C n (1) n A, Γ C (2) n B, Γ C (3) n A, Γ C (4) n B, Γ C (1) (3) A, Γ C (2) (4) B, Γ C n + 1 (iii) A B, Γ C A B B, Γ C n A B A B, Γ C A B, Γ C n 25

n B, Γ C n B, Γ C B, Γ C n + 1 QED A B, Γ A B, Γ C A B, Γ C inversion (*) n A B, Γ C n A B, Γ A Inversion lemma (i) n A B, Γ C n A, B, Γ C A B, Γ C ( A, B, Γ C n (*) A B, Γ C A B, Γ A (*) L R cut 12 G3ip inconsistent, L R Contraction contraction 6 Height-preserving contraction n D, Γ C n D, D, Γ C 12 cut 26

[ ] n = 0 D, D, Γ C L C D, Γ C L n contraction contraction formula (1) contraction formula D contraction D, D, Γ C D, D, Γ C n n D, Γ C n+1 D, Γ C (2) D D D = A B L n A, B, A B, Γ C 5 n A, B, A, B, A B, Γ C n A, B, Γ C L n+1 A B, Γ C D = A B D = A B n A B, A B, Γ A n B, A B, Γ C sequent n A B, Γ A 5 sequent n B, B, Γ C n B, Γ C n+1 A B, Γ C QED D = A B cut L cut cut cut L L cut L cut, Γ C P, Γ P P, C 27

P, C C = P C L cut P, Γ, C L cut formula 7: -Height cut cut-height cut 8 cut Γ D D, C Γ, C G3ip (1) cut L (2) cut cut formula (3) cut cut formula (4) cut cut formula cut L 1 Γ D L 11 cut formula D Γ cut Γ, C D, C weakening cut 12 Γ Γ, C L 2 D, C L 21 C Γ, C 22 C = D Γ C weakening cut Γ, C (cut ) 23 Γ, C L 24 D = cut Γ, C Γ, C 28

Γ 1 L Γ 13 cut-height 31 33 cut 3 cut formula D D (R- sequent n, m, k, 31 L Γ = A B, Γ cut-height n + 1 + m cut A, B, Γ D A B, Γ D L D, C A B, Γ, C L, L A, B, Γ D D, C A, B, Γ, C A B, Γ, C L cut-height n + m 32 L Γ = A B, Γ cut-height max(n, m) + 1 + k A, Γ D B, Γ D A B, Γ L D D, C A B, Γ, C n + k m + k cut A, Γ D D, C B, Γ D D, C A, Γ, C B, Γ, C A B, Γ L, C 13 sequent 29

33 Γ = A B, Γ cut-height max(n, m)+1+k A B, Γ A B, Γ D A B, Γ D D, C A B, Γ, C m + k cut A B, Γ A A B, Γ, A W k B, Γ D D, C B, Γ, C A B, Γ, C cut-height 4 cut formula D cut-height cut 41 L = A B, D, A, B, C Γ D D, A B, C L Γ, A B, C cut-height n + m + 1 n + m Γ D D, A, B, C Γ, A, B, C Γ, A B, C L 42 L = A B, cut-height n + max(m, k) + 1 D, A, C D, B, C Γ D D, A B, C Γ, A B, C L n + m n + k cut Γ D D, A, C Γ D D, B, C Γ, A, C Γ, B, C Γ, A B, L C 43 cut-height n + max(m, k) + 1 30

Γ D D, A B, A D, B, C D, A B, C Γ, A B, C n + m n + k cut Γ D D, A B, A Γ D D, B, C Γ, A B, A Γ, B, C Γ, A B, C 44 R C = A B cut-height n+max(m, k)+ 1 D, A D, B R Γ D D, A B Γ, A B n + m n + k cut Γ D D, A Γ D D, B Γ, A Γ, B R Γ, A B 45 R C = A B cut-height n + m + 1 n + k + 1 cut D, A Γ D D, A B R 1 Γ, A B D, B Γ D D, A B R 2 Γ, A B cut-height n + m n + k Γ D D, A Γ, A Γ, A B R 1 Γ D D, B Γ, B Γ, A B R 2 46 R C = A B cut-height n + m + 1 D, A, B Γ D D, A B R Γ, A B cut-height n + m cut 31

Γ D D, A, B Γ, A, B Γ, A B R cut-height 5 cut formula 51 D = A B cut-height max(n, m) + 1 + k + 1 cut Γ A Γ B A, B, C R Γ A B A B, C L Γ, C height n + k m + max(n, k) + 1 cut Γ A A, B, C Γ B Γ, B, C Γ, Γ, C Γ, C Ctr contraction cut-height cut-height cut-formula cut cut-height 52 D = A B cut-height n + 1 + max(m, k) + 1 Γ A Γ A B R A, C B, C 1 L A B, C Γ, C cut-height Γ B Γ A B R A, C B, C 2 L A B, C Γ, C cut-height n + m n + k 32

Γ A A, C Γ, C Γ B B, C Γ, C cut-height cut 53 D = A B n + 1 + max(m, k) + 1 A, Γ B Γ A B R A B A B, C A B, C Γ, C A, Γ B Γ A B R A B, A Γ, A Γ, C A, Γ B B, C A, Γ, C cut n+1+m, n + k, max(n + 1, m) + 1 + max(n, k) + 1 cut cut cut cut cut QED cut cut cut (a) (subformula property) 9 Γ C G3ip Γ, C G3ip cut 9 G3ip consistency 33

10 G3ip A B A B [ ] sequent R QED (b) 10 disjunction property Underivability results:g3ip sequent A A P P sequent sequent A A A P 11 sequent G3ip (i) P P (ii) (iii) (iv) P P ((P Q) P ) P (P Q R) ((P Q) (P R)) [ ] (i) P P disjunction property P P P P P R inversion P (ii): P P P P (i) root P P P L P P P (P ) R root P P 34

(iii): ((P Q) P ) P (Peirce s Law) 2 (P Q) P P Q P P (P Q) P P ((P Q) P ) P R sequent R P, (P Q) P P Q P, P Q P, (P Q) P Q (P Q) P P Q R P, P Q (P Q) P P Q P P Q R (P Q) P P Q ((P Q) P ) P (iv): (P Q R) ((P Q) (P R)) sequent R (P Q R) ((P Q) (P R)) sequent R 1 (P Q R) (P Q) (P Q R) ((P Q) (P R)) R 1 R R P, Q Q P, R Q L P, P Q R P P, Q R Q P, P Q R Q P Q R P Q R P Q R (P Q) (P R) R 1 P, R Q R P Q R P Q R P P Q R P Q R P Q P Q R P Q P Q R (P Q) (P R) R 1 35

R 2 sequent QED (c) A B ( A B) sequent (i) (ii) (iii) ( A B) A B A B A B (A B) A B (d) G3ip cut contraction 12 G3ip sequent Γ C [ ] sequent sequent sequent sequent L sequent sequent L endsequent G3cp: (1) A A (3) A A (4)RAA 36

Ạ A G-system sequent (multi succedent ) sequent A, Γ, B Γ, A B A, Γ B Γ A B A A, A, A multisuccedent R A (A G3cp Logical axioms: P, Γ, P Logical rules: G3cp A, B, Γ A B, Γ L Γ, A Γ, B Γ, A B R 37

A, Γ B, Γ A B, Γ L Γ, A, B Γ, A B R Γ, A B, Γ A B, Γ A, Γ, B Γ, A B R, Γ L G3cp G3cp invertible inversion 13 G3cp invertible invertible sequent R Γ, A Γ, B R Γ, A B n Γ, A B n Γ, A n Γ, B R invertible G3cp L, L invertible G3ip sequent C R R Γ, A B L A B Γ, A Γ, B L n inversion n+1 Γ, A B A B Γ, A B Γ, A B n n Γ, A n Γ, B n Γ, A n Γ, B 38

Γ, A Γ, B n + 1 A B R Γ, A Γ, B n QED G3cp weakning contraction Γ A, Γ LW Γ Γ, A RW A, A, Γ A, Γ LC Γ, A, A Γ, A RC G3cp cut rule, Γ, D D, Γ Γ, Γ, admissible G3ip 14 Height-preserving contraction: n C, C, Γ n C, Γ n Γ, C, C n Γ, C [ ] n = 0 L contraction L n contraction (1)contract contraction rule (2)contract 6 L L 6 R n Γ, A B, A n Γ, A B, B 13 invertibility Γ, A, A n Γ, B, B n contraction n Γ, A n Γ, B R n+1 Γ, A B n R R R vdash n A, Γ, A B, B height-preserving invertibility n A, A, Γ, B, B 39

n A, Γ, B R contraction A B, Γ, A B, A B, Γ A B, A B, Γ inversion n Γ, A, A n B, B, Γ n Γ, A n B, Γ A B, Γ n + 1 QED G3cp cut G3ip 15 cut Γ, D D, Γ Γ, Γ, G3cp cut G3cp 16 G3cp sequent Γ Γ, G3i G3c G3i A(t/x), xa, Γ C xa, Γ C L Γ A(y/x) Γ xa R A(y/x), Γ C Γ A(t/x) xa, Γ C L Γ A R R y Γ xa L y xa, Γ, C G3c 40

A(t/x), xa, Γ xa, Γ L Γ, A(y/x) Γ, xa R A(y/x), Γ Γ, A, A(t/x) xa, Γ L Γ, A R y Γ, xa L y xa, Γ, G3i G3c 16 t A(t/x) xa xa G3i G3c 17 G3i Γ C G3c Γ Γ, C (Γ, sequent G3i G3c G3i G3i xa cut R 18 G3i xa t A(t/x) existence property G3i x A xa 19 sequent x A xa G3i [ ] root R x A x A xa x A xa x A xa R x A x A A(t/x) x A A(t/x) x A xa R x A xa R R 41

R x A, A(y/x), A(z/x) x A, A(y/x) A(z/x) R x A, A(y/x) x A R, A(y/x) x A, A(y/x) x A A(y/x) R x A x A R xa x A xa x A xa R R x A, A(y/x), A(z/x), sequents G3ip sequent Γ sequent G3ip topsequent,, P 1,, P m Q 1,, Q n,,, G3ip Γ sequent 0 m, n 0 20 G3ip sequent Γ topsequent G3ip root-first C C (1)sequent C G3ip (2) tree topsequents L (3) sequent C sequent 42

21 regular sequence P 1,, P m Q 1,, Q n,,, sequent P i Q j sequent regular sequent trace formula 1 P 1 P m Q 1 Q n, m, n > 0 2 Q 1 Q n, m = 0, n > 0 3 (P 1 P m ), m > 0, n = 0 4, m, n = 0 regular sequence P i, Q j C L topsequent regular sequent tree trace formula trace formula C 1,, C n C (C 1 C n ) C 1 C n C C 1 C n C i P 1 P m Q 1 Q n trace formula P 1 P m Q 1 Q n C 1 C n 22 C regular sequence trace formulas C (C 1 C n ) sequent 23 valuation 0, 1 v(p ) = 0 v(p ) = 1 43

v( ) = 0 v(a B) = min(v(a), v(b)) v(a B) = max(v(a), v(b)) v(a B) = max(1 v(a), v(b)) v(a B) = 1 iff v(a) v(b) multiset Γ (Γ), (Γ) C Γ v (Γ) = min(v(c)), v (Γ) = max(v(c)) 24 sequent Γ v (Γ) > v ( ) v sequent Γ Γ v v (Γ) v ( ) 25 v min(v(a), v(b)) v(c) iff v(a) v(b C) 26 min(v(a B), v(a)) v(b) G3cp 27 Soundness sequent Γ G3cp Γ sequent L v (P, Γ) v (, P ) v (, Γ) v ( ) A, B, Γ A B, Γ L v (A, B, Γ) v( ) v (A B, Γ) = v (A, B, Γ) v (A B, Γ) v( ) 25,26 R QED 44

28 Completeness Γ G3cp Γ G3cp root first L regular sequent Γ regular sequents regular sequents Γ 1 1, Γ n n n > 0) regular sequent trace formula C i 22 C C 1 C n C (Γ) ( ) Γ v(c) = 1 C C 1 C n v(c) v(c 1 C n ) C i v v(c i ) = 1 C i 1 C i (P 1 P m ) P j 1 C i P 1 P m Q i Q r Q i Q r P j 1 Q k 0 C i 0 regular sequent QED 45