Size: px
Start display at page:

Download ""

Transcription

1

2

3 i JR

4 ii A B B A

5 iii

6 iv

7 White Orange Red Blue 4 X Y X Y X Y X Y (1) a b c d 1 Blue 2 Orange 3 White Orange 4 Red White

8 2 a-blue b-red c-white d-orange 1. 2 Orange a d 2. Orange a 3. 3 White b 4. 4 Red c 5. Blue d Orange a 8. Orange d 9. 3 White c Red b 11. Blue a Orange a d 7 Orange a Orange d A B A B R1 A A R2 A B A B R3 A B B A R4 A B B A R5 A B A B R6 1 A B

9 3 A B R7 2 A B A B R8 A B B A R9 A A R10 A A A A R11 A B A B C C 1.1. (1) a b c d 1 Red Orange 2 Blue Orange Red 3 Blue 4 Red Blue (2)

10 4 a b c d 1 Orange Red 2 White Red 3 White Blue 4 Blue Red White 5 Orange Blue (3) a b c d 1 Red Blue 2 Orange Blue White 3 Red Orange 4 White Red 5 Orange Blue 1.2.

11 5 a b c d a b c d 1. a b c d a b c d 6. a b c d 7. a 8. 2 a 9. a b c d a 10. a b c d a 11. a b c d a a 14. b b 16. a b c d b 17. a b c d b 18. a b c d b

12 b 21. c c 23. a b c d c 24. a b c d c 25. a b c d c c 28. d R12 C C R13 x C D C D D x x C x R14 C C R15 C C R16 1 C C R17 2 C C R18 M P S M S P

13 7 R19 P M S M S P 2 R15 3 R R = (2) 1.3. Violet White Orange Blue Pink Yellow Green Scarlet Red 9 a b c d e f g h i 1 Pink 2 Blue Blue 3 Violet Pink 4 Red Blue 5 Green White 6 Yellow Red 7 Scarlet White

14 8 a-violet b-red c-scarlet d-pink e-orange f-blue g-green h-yellow i-white ,880 Blue 6 Red a b c 4 Blue d e f 2 Blue f Red b 6 h Yellow Pink 1 Pink b d f h b f h Red Blue Yellow Pink d 3 a Violet 5 7 c Scarlet g Green i White 1.2. (1) a b c d e f g h i 1 Red 2 Pink White 3 Scarlet Blue 4 Yellow 5 Yellow Violet 6 White Scarlet Red 7 Orange Yellow

15 9 (2) a b c d e f g h i 1 White Scarlet 2 Violet 3 Pink 4 Pink Green 5 Scarlet 6 Pink Violet 7 Yellow Blue Violet 8 Blue Red 9 Blue 10 Orange (3) a b c d e f g h i 1 Orange 2 Red Blue

16 10 3 Scarlet Green 4 White 5 Violet 6 Orange Violet 7 White Green Red 8 Pink Red 9 Violet 3 10 Blue Scarlet 11 Yellow Red

17 A B A B B A 1.4. (1) (2) (3) (4)

18 12 (5) (6) (7) (8) (a) (b) (A)-(D) (A): (a) (b) (B): (a) (b) (C): (a) (b) (D): (a) (b) (1) (a) (b) (2) (a) (b) (3) (a) 20 (b) (4) x, y (a) x < y + 1 (b) x y (5) x, y (a) x < y + 1 (b) x y

19 deduction

20 14 (1) 1.6. (1) (2)

21 15 (3) (4) (5) (6) (7) (8) (9) (10) I don t like either tea or coffee. I don t like tea and I don t like coffee either. (11) (12) (13)

22 16 (14) n n n 400 n 1. n n 2. n n 4 n n n (1) (p1) (p2) (p3) (p4) (p5) (c1) (c2) (c3) (c4) (c5) (2) (p1) (p2) (p3) (p4)

23 17 (p5) (p6) (c1) (c2) (c3) (c4) René Descartes *1 *1

24 *2 * trivia Gottlob Frege *4 Bertrand Russell, *5 *2 *3 41 *4 *5

25 19 R R R R R R R R R R R

26

27 * = 10/2 0 5 > *1

28 22 a, b, c,... F, G, H, F (a), G(b), H(c),... F (a, b), G(c, d, e),...

29 23 F 2 G 3 1 A A A B A B A B A B A B A B x x x A xa A x xa x x x x x(f (x) G(x)) x x x x(f (x) G(x))

30 24 x(f (x) G(x)) F (a) G(a) *2 2.1 ( ). n n ( ) x, y, z a, b, c F, G, H t, s, u 2.2 ( ). 1. n F t 1,..., t n F (t 1, t 2,..., t n ) 2. A, B x A, (A B), (A B), (A B), xa, xa 3. L ( F (a) G(y)), (F (y) (G(x, y) H(a))) F, F (x), (G(a) ), (H(a) F (a, z), af (a) A, B, C *2

31 25 A B C (A (B C)) ((A B) C) x + y z x + (y z),, A B C A (A ((B C) A)) A B C (A (B C)) A B C B 2. B C A B C A 3. A B C B A C B xc (((A B) C) ((A C) (B C))) 2. (( A B) (( A B) A)) 3. (((A B) A) A) 4. ( (A B) ( A B)) 5. ((A B) ((C A) (C B))) 6. ((A (B C)) ((A B) (A C))) 1 A A A B A B A B B A A B B A xf (x) F (a) a F (x) xa A A A x a

32 26 x(f (x) xg(x)) F (x) xg(x) x a F (a) ag(a) F (a) xg(a) xg(a) x x G(a) F (a) xg(a) x x x 2.3 ( ). xa xa A x x xa xa A x A A F (x, y) G(a, z) x, y, z z( yf (x, y) wg(a, z)) x xf (x) G(x) x F (x) G(x) 2.4 ( ). A x t A x t( )

33 27 A[x/t] x( yf (x, y) zg(y, z))[x/a] x( yf (x, y) zg(y, z)) x x( yf (x, y) zg(y, z))[y/a] x( yf (x, y) zg(a, z)) F (x, y) y xa A[x/a] a A[x/a] xa a Male(x), F emale(x) x x 2 Eq(x, y), P arent(x, y), Couple(x, y), Elder(x, y) x y x y x y x y a, b, c L L P arent(a, b) Male(a) x(p arent(a, x) P arent(x, c)) xcouple(c, x) x(p arent(x, a) P arent(x, c) F emale(c) Elder(c, a)) 1 Nat(x) x 2 Leq(x, y) x y 3 Sum(x, y, z), P rod(x, y, z) x y z x y z L a n n *3 *3 0

34 28 L 4 xp rod(a 4, a 2, x) xp rod(a 9, a 3, x) xp rod(a 12, a 3, x) 7 x( yp rod(a 7, x, y) (Eq(x, a 1 ) Eq(x, a 7 )) 0 x(nat(x) Leq(a 0, x)) 1 0 x(nat(x) Sum(a 0, x, a 1 )) x(nat(x) y(nat(y) Leq(y, x))) x y y x y x(p arent(a, x) y(p arent(a, y) Eq(x, y))) x y y x y (1) Everybody loves somebody (2) Somebody is loved by everybody 2 (2) (1) (1) (2) Love(x, y) x y 2 (1 ) x ylove(x, y) (2 ) y xlove(x, y) 2.4. L

35 x P osreal 11. x, y y 0 x y

36 ( ). U U n U n n U n {, } U n R a 1,..., a n R(a 1,..., a n ) = R(a 1,..., a n ) R a 1,..., a n R(a 1,..., a n ) = R(a 1,..., a n ) 2 2 a b a, b

37 31 L a, b, c,... n m m n D (n, m) D (2, 4), (3, 9), (5, 5) (4, 2), (3, 8) n m (n, m) D D n m k 3 M n m k (n, m, k) M {(1923, 191), (8371, 12918), (38418, 9687), (1293, 6563)} 2.6 ( ). U v L U L n U n U v (U, v) L a v a U v(a) n F v F U n v(f )

38 ( ). (U, v) L (U, v) L U ρ x u ρ(x) ρ (U, v) ρ (x u) x u ρ { u y x ρ (x u) (y) = ρ(y) v ρ t v ρ { v(t) t v ρ (t) = ρ(t) t 2.8 ( ). (U, v) L ρ (U, v) (U, v) ρ 1. F (t 1, t 2,..., t n ) (U, v) ρ v(f )(v ρ (t 1 ), v ρ (t 1 ),..., v ρ (t 1 )) = 2. A (U, v) ρ A (U, v) ρ 3. A B (U, v) ρ A B (U, v) ρ 4. A B (U, v) ρ A B (U, v) ρ 5. A B (U, v) ρ (U, v) ρ A B 6. xa (U, v) ρ u U A (U, v) ρ (x u) 7. xa (U, v) ρ u U A (U, v) ρ (x u) A (U, v) ρ (U, v) ρ A (U, v) ρ A

39 A (U, v) (U, v) ρ, ρ (U, v) ρ A (U, v) ρ A (U, v) A (U, v) A U = {0, 1} U 0 1 v(a) = 0, v(b) = 1 v(f ) m, n U v(f )(m, n) m n U 2 F (a, a) F (a, b) F (b, b) F (b, a) F (b, a) F (a, a) F (a, b) F (b, a) F (a, a) ρ u U (U, v) ρ(x u) F (x, x) (U, v) ρ xf (x, x) U u u u (U, v) ρ(x 1) F (a, x) (U, v) ρ xf (a, x) 0 u u U L 2.10 ( ). A 1,..., A n B A 1,..., A n B A

40 34 A 1,..., A n B A 1,..., A n = B A = A = A = B B = A A B A B D x 1. A 1, A 2,..., A n, A = B A 1, A 2,..., A n = A B 2. A A 3. A B, A = B 4. A B, B C = A C 5. = A (B A) 6. ((A B) A) A 7. A B, B = A 8. (A B) ( B A) 9. A, B = A B 10. A 1 A 2 = A i (i = 1, 2) 11. A B = B A 12. A (A A) 13. A i = A 1 A 2 (i = 1, 2) 14. A B, A C, B C = C 15. A B, A = B 16. A B = B A 17. A (A A) 18. (A B) ( A B) 19. (A B) ( A B) 20. (A (B C)) ((A B) (A C)) 21. (A (B C)) ((A B) (A C)) 22. A (A (A B)) 23. A (A (A B)) 24. ((A B) C) ((A C) (B C)) 25. (A (B C)) ((A B) C)

41 = A = xa 27. A[x/a] = xa 28. xa = A[x/a] 29. x(a B) xa xb 30. x(a B), xa = xb 31. x(a B), xa = xb 32. x(a B) = xa xb 33. x(a D) xa D 34. x(a D) xa D 35. x(a B) xa xb 36. xa xb = x(a B) 37. x(a B), xa = xb 38. x(a D) xa D 39. x(a D) xa D 40. ( xa D) x(a D) 41. ( xa D) x(a D) 2.3 A 1,..., A n B A 1,..., A n B x(f (x) G(x)) xf (x) xg(x) (U, v) ρ (1) (U, v) ρ x(f (x) G(x)) (2) (U, v) ρ xf (x) xg(x) (2) (3) (U, v) ρ xf (x) (4) (U, v) ρ xg(x) (3) U u (5) (U, v) ρ(x u) F (x) (1) (6) (U, v) ρ(x u) F (x) G(x) (7) (U, v) ρ(x u) F (x) (5) (4) (U, v) u (8) (U, v) ρ(x u ) G(x) (1) (9) (U, v) ρ(x u ) F (x) G(x) (10) (U, v) ρ(x u ) G(x) (8) x(f (x) G(x))

42 36 xf (x) xg(x) x(f (x) G(x)) xf (x) xg(x) 2. x(f (x) G(x)) xf (x) xg(x) (U, v) ρ (1) (U, v) ρ x(f (x) G(x)) (2) (U, v) ρ xf (x) xg(x) (2) (3) (U, v) ρ xf (x) (4) (U, v) ρ xg(x) (3) (U, v) u (5) (U, v) ρ(x u) F (x) (1) (U, v) ρ(x u) F (x) Gx) (6) (U, v) ρ(x u) F (x) (7)(U, v) ρ(x u) G(x) (6) (5) (7) (4) (U, v) u (8) (U, v) ρ(x u ) G(x) (1) (9) (U, v) ρ(x u ) F (x) G(x) (10) (U, v) ρ(x u ) F (x) (11) (U, v) ρ(x u ) G(x) (11) (8) (10) (1)(2)(3)(4)(5)(7)(8)(9)(10) (6) (11) (7) (10) U = {u, u } v(f ) = {u }, v(g) = {u} (U, v)

43 ( 5 ) A = B A A = A B A, A = B

44 L E J L. E. J. Brouwer C I C. I. Lewis Graham Priest 1948-

45 x(f x Gx) the + The present king of France is bald F (x) B(x) I(x, y) x(f (x) ( y(f (y) I(x, y)) B(x)))

46 40 x(f (x) ( y(f (y) I(x, y)) B(x))) F (x) x

47 A B A B 3.1

48 42 A B A B B A A B B A A E I O A I I X X X Y M A B A b A B A B

49 43 A B A B A B A b 1. X m 2. Y M 2 Y m X m XYm Xym

50 44 XYm Xym M m M m M m X y 1. X M 2. M Y X m 2 M y

51 45 M m X Y X Y F t, t F t F t

52 ( ). p, q, r, A, B A A B A B A B ( ). v p v p v(p) 3.3 ( ). v v 1. p v v(p) = p v 2. A v A v A v 3. A B v A B v A B v 4. A B v A B v A B v 5. A B v A v B v A B v 3.4 ( ). A 1,..., A n B A 1,..., A n B A A

53 47 A 1,..., A n B A 1,..., A n = B A = A x, y, z x y = ((x y) + x) x y = x y 3 x y = ((x y) + x) + y 4 x = x x + 0 = x 6 x + x = 0 7 x 0 = 0 8 x 1 = x 9 x x = x 10 x (y + z) = (x y) + (x z) 11 x + (y + z) (x + y) + z 12 x + y = y + x 13 x (y z) (x y) z 14 x y = y x 1 A A A A = 4 A (A + 1) = 3 ((A (A + 1)) + A) + (A + 1) = 10 (((A A) + (A 1)) + A) + (A + 1) = 9 ((A + (A 1)) + A) + (A + 1) = 8 ((A + A) + A) + (A + 1) = 11 (((A + A) + A) + A) + 1 = 6 ((0 + A) + A) + 1 = 12 ((A + 0) + A) + 1 = 5 (A + A) + 1 = = = 5 1

54 48 A A x(f x Gx) 3.2 F a Gb 3.2 x(f (x) G(x), ( xf (x) xg(x)), xf (x), F (a), F (a) G(a), F (a), G(a) x(f (x) G(x), ( xf (x) xg(x)), xg(x), G(b), F (b) G(b), F (b), G(b) 3.2

55 49 x(f (x) G(x)) (1) ( xf (x) xg(x)) (2) xf (x) (3) xg(x) (4) F (a) (5) G(b) (8) F (a) G(a) (6) F (b) G(b) (9) F (a) (7) F (b) G(a) G(b) (10) 3.2 x(f x Gx) = xf x xgx x(f (x) G(x)) (1) ( xf (x) xg(x)) (2) xf (x) xg(x) F (a) G(b) F (a) G(a) F (b) G(b) F (a) G(a) F (b) G(b) 3.3 x(f x Gx) = xf x xgx xf (x) a F (a) F (a) xg(x) G(b) G(b)

56 A A 2. A B A B 3. (A B) A B 4. A B A B 5. (A B) A B 6. A B A B 7. (A B) A B 8. xa A[x/a] a a A[x/a] 9. xa A[x/b] b 10. xa A[x/b] b 11. xa A[x/a] a a A[x/a] 12.

57 51 A. A A B. A B (A B). A B A B. A B (A B). A B A B. A B (A B). A B xa... a.... A[x/a] xa. A[x/b]

58 52 xa. A[x/b] xa... a.... A[x/a] x((f (x) G(x)) H(x)) (H(x) ( F (x) G(x))) (1) 2 (H(a) ( F (a) G(a))) (2) x((f (x) G(x)) H(x)) x((f (x) G(x)) H(x)) x(h(x) ( F (x) G(x))) x(h(x) ( F (x) G(x))) (H(a) ( F (a) G(a))) (1) (2) (H(a) ( F (a) G(a))) H(a) ( F (a) G(a)) (3) ( F (a) G(a)) F (a) G(a) (4) x((f (x) G(x)) H(x)) x(h(x) ( F (x) G(x))) (H(a) ( F (a) G(a))) H(a) ( F (a) G(a)) x((f (x) G(x)) H(x)) x(h(x) ( F (x) G(x))) (H(a) ( F (a) G(a))) H(a) ( F (a) G(a)) F (a) G(a) (3) (4) F (a) G(a) (5)

59 53 x((f (x) G(x)) H(x)) x(h(x) ( F (x) G(x))) (H(a) ( F (a) G(a))) H(a) ( F (a) G(a)) F (a) G(a) F (a) G(a) (5) x((f (x) G(x)) H(x)) a (F (a) G(a)) H(a) (6) x((f (x) G(x)) H(x)) a a x((f (x) G(x)) H(x)) a x(h(x) ( F (x) G(x))) (H(a) ( F (a) G(a))) H(a) ( F (a) G(a)) F (a) G(a) F (a) G(a) (F (a) G(a)) H(a) (F (a) G(a)) H(a) (6) (F (a) G(a)) H(a) (F (a) G(a)) H(a) H(a) H(a)

60 54 x((f (x) G(x)) H(x)) a x(h(x) ( F (x) G(x))) (H(a) ( F (a) G(a))) H(a) ( F (a) G(a)) F (a) G(a) F (a) (F (a) G(a)) H(a) (F (a) G(a)) H(a) (7) G(a) (F (a) G(a)) H(a) (F (a) G(a)) H(a) (F (a) G(a)) F (a) G(a) (8) x((f (x) G(x)) H(x)) a x(h(x) ( F (x) G(x))) (H(a) ( F (a) G(a))) H(a) ( F (a) G(a)) F (a) G(a) F (a) (F (a) G(a)) H(a) (F (a) G(a)) H(a) F (a) G(a) (8) G(a) (F (a) G(a)) H(a) (F (a) G(a)) H(a) F (a) G(a) x((f (x) G(x)) H(x)) (H(x) ( F (x) G(x)))

61 55 x(f (x) G(x)), x(h(x) G(x)) x(f (x) (H(x) G(x))) (1) (2) x(f (x) G(x)) x(f (x) G(x)) x(h(x) G(x)) x(h(x) G(x)) x(f (x) (H(x) G(x))) x(f (x) (H(x) G(x))) F (a) G(a) H(b) G(b) (1) (2) F (a) G(a) H(b) G(b) (3) x(f (x) (H(x) G(x))) a (4) x(f (x) G(x)) x(f (x) G(x)) x(h(x) G(x)) x(h(x) G(x)) x(f (x) (H(x) G(x))) x(f (x) (H(x) G(x))) a F (a) G(a) F (a) G(a) H(b) G(b) H(b) G(b) F (a) F (a) G(a) G(a) H(b) H(b) G(b) G(b) (F (a) (H(a) G(a))) (3) (4) (F (a) (H(a) G(a))) F (a) (H(a) G(a)) (5) F (a) (H(a) G(a)) H(a) G(a) (6) G(a)

62 56 x(f (x) G(x)) x(h(x) G(x)) x(f (x) (H(x) G(x))) a F (a) G(a) H(b) G(b) F (a) G(a) H(b) G(b) (F (a) (H(a) G(a))) F (a) (H(a) G(a)) x(f (x) G(x)) x(h(x) G(x)) x(f (x) (H(x) G(x))) a F (a) G(a) H(b) G(b) F (a) G(a) H(b) G(b) (5) (6) (F (a) (H(a) G(a))) F (a) (H(a) G(a)) H(a) G(a) x(f (x) (H(x) G(x))) b F (b) (H(b) G(b)) (8) x(f (x) G(x)) x(h(x) G(x)) x(f (x) (H(x) G(x))) a b F (a) G(a) H(b) G(b) F (a) G(a) H(b) G(b) (F (a) (H(a) G(a))) F (a) (H(a) G(a)) H(a) G(a) (F (b) (H(b) G(b))) (8) (F (b) (H(b) G(b))) (H(b) G(b)) (9)

63 57 x(f (x) G(x)) x(h(x) G(x)) x(f (x) (H(x) G(x))) a b F (a) G(a) H(b) G(b) F (a) G(a) H(b) G(b) (F (a) (H(a) G(a))) F (a) (H(a) G(a)) H(a) G(a) (F (b) (H(b) G(b))) F (b) (H(b) G(b)) H(b) G(b) (9) 1. a 1,..., a n 2. U = {1, 2,..., n} a i (1 i n) v(a i ) = i v 3. P 1,..., P m 4. v P i (1 i m) P i (b 1,..., b k ) v(b 1 ), v(b 2 ),..., v(b k ) a, b G(b), H(b), G(a), F (a) U = {1, 2} v a 1 b 2 F G H (U, v) 1 2 F (a) H(b)

64 58 F (b) H(a) 1 2 G(a), G(b) F (a) G(a) H(b) G(b) x(f (x) G(x)) x(h(x) G(x)) F (b) G(a) ρ (U, v) = ρx 1 F (x) (H(x) G(x)) (U, v) = ρx 2 F (x) (H(x) G(x)) U C U U C U C P U C P C P C P C C C P C P C P C 1. A 1,..., A n = B A 1,..., A n B

65 59 2. A 1,..., A n B A 1,..., A n = B *1 *1

66 60 x yf (x, y) G(a 0 ) yf (a 0, y) F (a 0, a 1 ) yf (a 1, y) F (a 1, a 2 ) yf (a 2, y) F (a 2, a 3 ) yf (a 3, y) x yf (x, y) G(a 0 ) 3.4

67

68

69 63 4 *1 *1

70 64 * *3 4.1 *2 *3 4.2

71

72 A B B A *4 A B A A *4

73 (1) (2) (3) (4)

74 68 (5) (1)

75 69 (2) 4.3. (1) (2) (3) 4.3

76

77 W1H who what when when why how W1H

78 J F J F J F J F

79 (1) 2009 (2) (3) OS 4.5.

80 74 PROSPECTUS

81 A B

82

83 analogy induction abduction A B extrapolation A B A B

84 78 *1 (1) (2) (3) (1)(2) (3) (2)(3) (1) (1)(3) (2) (1) (3) (2) H B H P P H P H B P H B H B P *1 2008

85 A P B P A B

86 80 A B *2 A B A B A B P 5.1. (1) (2) (3) 5.2. (1) 10 A *2

87 81 (2)

88 P Q 1. P Q 2. Q P 3. C P Q

89 [ /110] *3 *3

90 84 P Q P Q P 5.4. (1) (2) 10km (3) IQ 5.5. (1) (2) 10 16

91 D D (1) D (2) D 5.4

92

93

94

95 (1) (2) (3) (4) (5) (6)

96 90 (7) A B A B A B A B (8)

97 A B s B s A B A

98 92 A 1 A 2... A n B A k s B s A k *1 e e p q p e Re f f(p, q) f(p, q) p q pq B e 1, e 2,..., e n e i p i q i B e i f(p, q) p q 30 1/ /2 20 P (1 P ) 10 + (1 P ) (1/2) 20 = 20 20P P 30 + P (1/20) 200 = 40P 1/3 1/3 * TBS 2000

99

100 A, B A B A B A B A B A B B 0 A B A 1 A A B 1 A B A B A A A A 1 B B

101 A

102 (1) (2) 2 k 2 k (3) A B A 100 B (a)(b) (a) A B

103 97 (b) A B (c) (a) (b)

104 98

105 99 7 * In God We Trust *1 P. J pp 60-66

106

107 ( ). set a, b, c,... { } {a, b, c,...} a, b, c,... a, b, c,... element a S a S a S a / S {a, b} {b, a} {a, a} {a} 8.2 ( ). empty set 8.3 ( ). C(x 1,..., x n ) n *1 x 1,..., x n x 1 x 1 3 x 2 3 x x 2 2 = x 2 3 C(x 1,..., x n ) x 1,..., x n x 1,..., x n { x 1,..., x n C(x 1,..., x n )} {x x 5 } 5 {0, 1, 2, 3, 4, 5} *2 8.4 ( ). S T S T subset S T S S, S S 8.5 ( ). S T T S S *1 *2 0

108 102 T T S S T S = T 8.6 ( ). S T S = T S T proper subset S T 8.7 ( ). I i I S i {S i i I} I I {S i i I} (S i ) i I (S i ) i 8.8 ( ). S T S T union S T S T S T intersection S T M M M = {x M M(x M)} M = {x M M(x M)} I (S i ) i I S i = (S i ) i I i I S i = (S i ) i I i I S T S T subtraction S \ T S T 8.9. S = {0, 1, 2}, T = {2, 3, 4} S T = {0, 1, 2, 3, 4} S T = {2} S \ T = {0, 1} S 1 S 2 S 3 S 1 S 2 S 3 S 1 S 2 S 3 (S 1 S 2 ) S 3 S 1 (S 2 S 3 ) S 1 (S 2 S 3 ) = (S 1 S 2 ) S 3 S 1 (S 2 S 3 ) = (S 1 S 2 ) S 3

109 A, B, C A B = B A A (B C) = (A B) C A B = B A A (B C) = (A B) C A (B C) = (A B) (A B) A (B C) = (A B) (A B) (A \ B) B = A (A \ B) B = A \ (B C) = (A \ B) (A \ C) A \ (B C) = (A \ B) (A \ C) A A A B B C A C A B A A A B B A C A B C A A B A C A B C x C(x) C (x) {x C(x)} {x C (x)} 8.11 ( ). S S power set P(S) 2 S S = {0, 1, 2} P(S) = {, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}} 8.12 ( ). S x T y x, y { x, y x S, y T } S T cartesian product S T S = {0, 1}, T = {a, b, c} S T = { 0, a, 0, b, 0, c, 1, a, 1, b, 1, c } S 1 (S 2 S 3 ) S 1 S 2 S 3 S 1 S 2... S n x 1, x 2,... x n 1, x n... x 1,..., x n S n S n S 1 = S,

110 104 S n+1 = S S n 8.13 ( ). S 1,..., S n S 1 S 2... S n R n n-ary relation n 1 R S n R S n N N 2 = N N L { x, y x, y N 2, x < y} x, y L x, y x < y R x, y R xry 8.15 ( ). R S (1) x S xrx R reflexive (2) x, y S xry yrx R symmetrical (3) x, y, z S xry yrz xrz R transitive (4) x, y S xry yrx x = y R antisymmetric 8.16 ( ). S R S semiorder, partial order x, y S x y y x S total order 8.17 ( ). S S (S, ) partially ordered set; poset (S, ) totally ordered set (S, ) S (S, ) M S M M x, y M x M y x y (M, M ) (S, ) *3 M M 8.18 ( ). (M, M ) (S, ) M x S y x y y M *3

111 105 upper bound M x S y y x y M lower bound S M S M supremum M (1) x M x M (2) M x M x S M S M infimum M (1) x M M x (2) M x x M (M, M ) (M, M ) (1) S P(S) M, N P(S) M S N M N S P(S) P(S) M M, M M (2) N x, y N x y x y N 8.21 ( ). (S, ) s S x S s x s = x s S maximal element x S x s s = x s S minimal element x S x s s S maximum element x S s x s S minimum element (S, ) (S, ) (S, ) (S, ) (M, M ) (M, M )

112 R Z + R M = {1 1/n n Z + } M M (M, M ) 1 1 M M 8.24 ( ). (S, ) S (M, M ) S well-ordered set (1) N (N, ) Q (Q, ) ({x Q 0 < x}, ) (Q, ) 8.26 ( ). S S equivalent relation x, y Z x 3 y x 3 y 3 3 Z 8.28 ( ). S x S [x] = {y S x y} x equivalent class S/ = {[x] x S} S/ S quotient set S x, y S [x] = [y] x y 8.30 ( ). A B f A B function mapping, map (1) a A b B a, b f (2) a A, b, b B a, b f a, b f b = b. A a a, b f B b f A B f A B f : A B A f domain B f codomain a A, b B a, b f b f(a)

113 107 A 1 A 1... A n a 1,..., a n A 1 A 1... A n f( a 1,..., a n ) f(a 1,..., a n ) Z Q f : Z (Z \ {0}) Q, f(x, y) = x y f Z (Z \ {0}) Q f : Z Z Q, f(x, y) = x y 1, 0 f(1, 0) 8.32 ( ). A id A (a) = a ( a A) id A : A A A identity function 8.33 ( ). f : A B, g : B C g f : A C g f(a) = g(f(a)) ( a A) g f f g composition 8.34 ( ). f : A B A M {f(x) B x M} M f direct image f[m] B N {x A f(x) N} N f inverse image f 1 [N] f : A B g : B C h : C D id B f = f = f id A h (g f) = (h g) f g f[m] = g[f[m]] ( M A) (g f) 1 [M] = f 1 [g 1 [M]] ( M C) f[m M ] = f[m] f[m ], f[m M ] = f[m] f[m ] ( M, M A) f 1 [M M ] = f 1 [M] f 1 [M ], f 1 [M M ] = f 1 [M] f 1 [M ] ( M, M B) 8.36 ( ). f : A B x, y A f(x) = f(y) x = y f injection one-to-one mapping

114 108 x B y A f(y) = x f surjection onto mapping f f bijection 8.37 ( ). (S i ) i I (S i ) i I i I S i f f(s i ) S i (S i ) i I i I (S i ) i I i I S i (S i ) i I i I S i the axiom of choice f : A B, g : B C f, g g f g f f g f g f h : B A h f = id A f h : B A f h = id B S i

JR A B B A

JR A B B A 2012 1 2 2 2 2.1...................................... 2 2.2............................................. 4 2.3................................. 9 2.4........................................ 9 3 10 3.1.............................................

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

( ) ( ) Iverson

( ) ( ) Iverson ( ) ( ) 2012 1 2 1 2 1.1....................................... 2 1.2....................................... 2 1.3 Iverson........................................ 9 1.4.............................................

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

掲示用ヒート表 第34回 藤沢市長杯 2017

掲示用ヒート表 第34回 藤沢市長杯 2017 34 8 4 2 Round 1 Round 2 SEMI FINAL 30 16 8 H1 H5 H1 H1 Red 12401821 2 Red 12601360 2 1-1 Red 12501915 1 1-1 Red 12501915 4 White 12900051 4 White 12600138 3 3-1 White 12802412 2 3-1 White 12801091 1 Yellow

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

2 2.1 (set) A, B, C, (element). ( ) a A, a A. a A, a A. A a A a 19 N. 3 N, 2 / N ( ) 20 {1, 2, 3, 4, 5} {5, 2, 1, 3, 4} {1, 1, 1} {{1, 2}, {2, 3

2 2.1 (set) A, B, C, (element). ( ) a A, a A. a A, a A. A a A a 19 N. 3 N, 2 / N ( ) 20 {1, 2, 3, 4, 5} {5, 2, 1, 3, 4} {1, 1, 1} {{1, 2}, {2, 3 . (set),, C, (element). ( ),.,. 9 N. N, / N.. ( ) 0 {,,, 4, 5} {5,,,, 4} {,, } {{, }, {,, 4}} (empty set) ϕ {} : N = {0,,, } N, Z, Q, R (0 ).. P (x) x {x P (x)} {x R 0 x } [0, ] (0 ) S = {x P (x)} x S

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S 12 2 e 2.1 2.1.1 S,T S s S T t T (map α α : S T s t = α(s (2.1 S (domain T (codomain (target set, {α(s} T (range (image 2.1.2 s, s S t T s S t T, α s, s S s s, α(s α(s (2.2 α (injection 4 T t T (coimage

More information

★結果★ 藤沢市長杯 掲示用ヒート表

★結果★ 藤沢市長杯 掲示用ヒート表 AA 35 Round 1 8 4 Round 2 28 16 SEMI FINAL H1 H5 H1 H1 Red 12802015 1 Red 12802109 1 1-1 Red 12802015 2 1-1 Red 12702346 White 12800232 2 White 12702406 3 3-1 White 12702346 1 3-1 White 12802109 Yellow

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

P14・15地域文化祭

P14・15地域文化祭 2008 1BETSUKAI 2008.10 BETSUKAI 2008.102 3BETSUKAI 2008.10 BETSUKAI 2008.104 5BETSUKAI 2008.10 BETSUKAI 2008.106 7BETSUKAI 2008.10 BETSUKAI 2008.108 9BETSUKAI 2008.10 BETSUKAI 2008.1010 11BETSUKAI 2008.10

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

untitled

untitled 4 1 1 1 1968 8 3 1970 4 1 1967 3 8 1968 5 27 1970 11 10 5 1971 1971 1 13 3 3 1 18 3 2 3 3 3 3 1972 4 28 3 3 5 2 2 4 6 29 4 5 3 1973 9 18 10 5 5 10 17 11 13 5 2 1980 12 5 1/3 3 3 4 1982 1984 3 27 10 12

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

線形空間の入門編 Part3

線形空間の入門編 Part3 Part3 j1701 March 15, 2013 (j1701) Part3 March 15, 2013 1 / 46 table of contents 1 2 3 (j1701) Part3 March 15, 2013 2 / 46 f : R 2 R 2 ( ) x f = y ( 1 1 1 1 ) ( x y ) = ( ) x y y x, y = x ( x y) 0!! (

More information

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s, 1 (Naturau Deduction System, N-system) 11,,,,, n- R t 1,, t n Rt 1 t n atomic formula : x, y, z, u, v, w, : f, g, h, : c, d, : t, s, r, : P, Q, : R, : A, B, C, D, 12 A A A A N-system 1 1 N-system N-system

More information

第32回新春波乗り大会2018

第32回新春波乗り大会2018 AA 32 Round 1 4 SEMI FINAL 2 20 8 FINAL H1 H1 H1 Red 12701793 1 1-1 Red 12701793 2 1-1 Red 11800623 White 12900058 4 3-1 White 12402115 4 2-1 White 12402209 Yellow 11603976 3 2-2 Yellow 12301534 3 1-2

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

第三学年  総合的な学習の指導案(国際理解・英語活動)

第三学年  総合的な学習の指導案(国際理解・英語活動) NAT NAT NAT NAT NAT NAT All English NAT 20 One One One One One Show Time Silent Night Are You Sleeping? NAT NAT NAT NAT NAT What color do you like? ( NA ( ) Good afternoon, boys & girls. Good afternoon,

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

計算機基礎論

計算機基礎論 集合論の基礎 (1) 集合演算 デカルト積 ( 教科書 :1.1~1.3) 藤田聡 ( 広島大学 ) 集合と要素 対象 (object) の集まりを集合 (set) という 集合を構成する対象を 集合の要素 (element) または元という 例 : V を英語の母音の集合とすると V ={ a,e,i,o,u } であり たとえば a は V の要素 集合はその要素を含む (contain) あるいは要素は集合に属す

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F Quiz 1 Due at 10:00 a.m. on April 20, 2007 Division: ID#: Name: 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T F T T F T T T F F T F T T T F T F T F F T T F F F T 2. 1.1 (1) (7) p.44 (1)-(4)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

CD口頭目次.indd

CD口頭目次.indd A15-0900 A15-0915 A15-0930 A15-0945 A15-1000 A15-1015 A15-1030 A15-1045 A15-1100 A15-1115 A15-1130 A15-1145 A15-1345 A15-1400 A15-1415 A15-1430 A15-1445 A15-1500 A15-1515 A15-1530 A15-1545 A15-1600 A15-1615

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

untitled

untitled 1. 1 2. 2 3.,1995 3 223119 3.1,, 4 3.2 NTT,2003 5 mile,2003 4.,, 6 , 2001 22 126 7 9 34 22 22 8 (139) 8 6. 6.1,,,,,, 9 6.2a Who What Whom When How Where 3 4 5 4 8 8 4, 7 6,,,, 2 or 3 6.2NGO NGO Who What

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z)))) 4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2 Morality mod Science 4 2017 10 19 1 1.1 (1.1) 1 2 A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B (1.2) 1 A B 2 B A 1.2 A B minao.kukita@gmail.com 1 A A A B A B A B A B

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1 1 1 1.1 G.Cantor (1845 1918) 1874 Unter eines Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten in unserer Anschauung oder unserers Denkens (welche die Elemente von

More information

ab c d 6 12 1:25,000 28 3 2-1-3 18 2-1-10 25000 3120 10 14 15 16 7 2-1-4 1000ha 10100ha 110ha ha ha km 200ha 100m 0.3 ha 100m 1m 2-1-11 2-1-5 20cm 2-1-12 20cm 2003 1 05 12 2-1-13 1968 10 7 1968 7 1897

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

../dvi98/me98enve.dvi

../dvi98/me98enve.dvi Chapter 5 1 2 CHAPTER 5. 5.1 8 (x ) 2 +(y + ) 2 1=j 2 R9 x + y = x + y = p 2 x + y = p 2 ff(x; y; ) =j 2 Rg ( f(x; y; ) = @ @ f(x; y; ) = (5:1) f 3 (x; y) = f 3 (x; y) ==)9 : f(x; y; ) = @f @x @f @y 1

More information

TEAM WEAR 1

TEAM WEAR 1 TEAM WEAR 1 2 TEAM WEAR BUSINESS WEAR 3 4 5 6 7 11 13 28 29 41 43 45 INDEX 3 4 5 6 z x c v b n 7 1 m 0, 2 3 4 5. z x c v b n m,. 0 1 2 3 4 5 8 z x c v b n m,. 9 1 0 2 3 4 5 z x c v b n m,. 0 1 2 3 4 5

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

di-problem.dvi

di-problem.dvi 005/05/05 by. I : : : : : : : : : : : : : : : : : : : : : : : : :. II : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. III : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : :

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

untitled

untitled 23 12 10 12:55 ~ 18:45 KKR Tel0557-85-2000 FAX0557-85-6604 12:55~13:00 13:00~13:38 I 1) 13:00~13:12 2) 13:13~13:25 3) 13:26~13:38 13:39~14:17 II 4) 13:39~13:51 5) 13:52 ~ 14:04 6) 14:05 ~ 14:17 14:18 ~

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 47 200 300 1 1 25172005 1

1 47 200 300 1 1 25172005 1 8... 1... 24... 55 3... 75... 93 17 2005 1 47 200 300 1 1 25172005 1 8 pdf 1 2 9 1812 6 3 1832 11 7 1836 1 2 2 4 9 1997 2 2 101813 1 1 9 5 4 7 3 12 3 4 7 10 6 3 10 6 3 12 5 3 A 10 5 B 4 C 10 7 D 3 E 5

More information

14 88 7 1 3 4 75 14 9 13 51 16 22 16 69 22 134 54 40 27 5 29 29 3 31 11 2-1 - 12 22 20 150 200 4.1993 22 22 250 400 2011 576 2011 2 2010 2 3 3 4 77 1990 448 1,298 3 2-2 - 1990 7 5,000 100 5 8 1996 75 85

More information

... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 1 -... - 3 -... - 4 -... - 4 -... - 4 -... - 5 -... - 6 -... - 6 -... - 6 -... - 6 -... - 6 -... - 7 -... - 7 -... - 7 -... - 7 -...

More information

untitled

untitled 1 2 3 4 5 (1834) 1834 200 6 7 8 9 10 11 (1791) (17511764) (1824) 1843 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 (1791) (1791) (17511764) (17511764) (1824)1843

More information