物性物理学I_2.pptx

Similar documents
<4D F736F F F696E74202D208DDE97BF955D89BF8A778AEE F8BF38AD48C512E B93C782DD8EE682E890EA97705D>

PowerPoint Presentation

<4D F736F F F696E74202D2095A890AB95A8979D91E682528FCD B8CDD8AB B83685D>

7

構造化学

Microsoft PowerPoint - 10JUL13.ppt

Gmech08.dvi

ssp2_fixed.dvi

<4D F736F F F696E74202D20907D8DDE97BF89C88A778AEE F89F190DC8B748A698E712E B8CDD8AB B83685D>

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)


Microsoft PowerPoint - 基礎IV演習1-8.pptx

Gmech08.dvi

~5 セメナノサイエンス基礎 A 1~ 結晶 結晶と非晶質結晶 : 原子配列が規則的非晶質 : 原子配列が不規則的 単結晶と多結晶単結晶 : 巨視的に見て原子配列が規則的な結晶多結晶 : 単結晶が集まったもの いろいろな操作によって 結晶格子を自分自身に重ね合わすことができる操作をまとめて点群操作と

Xray.dvi

15

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Microsoft PowerPoint - 図材料科学基礎Ⅰ14_基礎編1.pptx

PowerPoint Presentation

Microsoft Word - XRD_2010.doc

物性物理学I_2.pptx


TOP URL 1

85 4

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

I

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

数学の基礎訓練I

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

SPring-8ワークショップ_リガク伊藤

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

Microsoft PowerPoint - qcomp.ppt [互換モード]

SO(2)

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

all.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

X線-m.dvi

Microsoft PowerPoint - 図材料科学基礎Ⅰ14_応用編1.pptx

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

6

LLG-R8.Nisus.pdf

QMI_10.dvi

CoPt 17

直交座標系の回転


: , 2.0, 3.0, 2.0, (%) ( 2.

ラウエ法方位解析説明書

untitled

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

第3章

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

Microsoft Word - 固体の電子論第2講.doc

吸収分光.PDF

飽和分光

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

30

三木研授業2009.key

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Gmech08.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

c 2009 i

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

main.dvi

Part () () Γ Part ,

power.tex

2011de.dvi

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

chno01.dvi

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

熊本大学学術リポジトリ Kumamoto University Repositor Title 固体物性学講義ノート Author(s) 黒田, 規敬 Citation Issue date 2008 Type URL Learning Material


Transcription:

2 物質の構造 単結晶 秩序 から 非晶質 乱れ まで 0) 凝縮系物質の形態 morphology polycrystal monocrystal single crystal 準結晶 quasicrystal 1) 結晶の構造 amorphous ー周期性と並進対称性ー 単結晶 でも 非晶質 でもない固体内秩序 h"p://shinbun.fan@miyagi.jp/arlcle/arlcle_20120223.php Daniel Shechtman Ho@Mg@ZnIalloy h"ps://ja.wikipedia.org/wiki/%e6%ba %96%E7%B5%90%E6%99%B6#/media/File:Ho@Mg@ZnQuasicrystal.jpg h"ps://news.engineering.iastate.edu/i 2011/10/05/iowa@state@ames@laboratory@ technion@scienlst@wins@nobel@prize@in@ chemistry/ 強靭 高抵抗

TranslaLon(al)Ivector T = n 1 a + n2 b ( n i = 0, ±1, ± 2,... ) primilveicell basisivector b θ a primilveivector { x 1a + x2b; 0 xi 1} (oblique)

単純(基本単位 胞の選び方 正方格子 (square) b 90 長方格子 (rectangular) b a 面心格子 (centered rectangular) b 基本格子ベクトルの選び方 90 a 90 a 六方格子 (hexagonal) 60

n C n θ = 2π n n = 1, 2, 3, 4, 6 IcrystalIla\ce IcrystalIfamily I Monoclinic I Oblique a b, θ 90 I Orthorhombic I Rectangular I CenteredI rectangular a b, θ = 90 I Hexagonal I Hexagonal a = b, θ = 120 (60 ) I ITetragonal I Square a = b, θ = 90

t n = n 1a + n2b + n3c ( n i = 0, ±1, ± 2,... )

http://www.iue.tuwien.ac.at/phd/karlowatz/node8.html π 6 0.52 3 8 π 0.68 2 6 π 0.74 2 6 π 0.74

基本格子ベクトルの取り方 a2 a3 a1 y z a a1 = ( x + y ) 2 a a2 = ( y + z ) 2 a a3 = ( z + x ) 2 a a1 = ( x + y z ) 2 a a2 = ( x + y + z ) 2 a a3 = ( x y + z ) 2 a1 = ax a2 = ay a3 = az a3 x a2 a1 h"p://www.askwillonline.com/2013/10/the@structure@of@materials.html 積層のちがいと積層欠陥 stacking fault 面心立方格子 (fcc) ABCABCABC A B C 六方細密充填 (hcp) ABABAB 1) 結晶の構造 ー周期性と並進対称性ー

R hkl R hkl = h a 1 + k a 2 + l a 3 [ hkl] [ 100] 100 R m1 00 010 010 R 0m2 0 a 1, a 2, a 3 ( h, k,l Z) [ ] [ 001] 001 R 00m3 h : k : l = 1 m 1 : 1 m 2 : 1 m 3 ( hkl) [ hkl] ( hkl) ( hkl) { hkl} h"ps://commons.wikimedia.org/wiki/file%3amiller_indices_felix_kling.svg

典型的な結晶構造 (1) ダイアモンド構造 せん亜鉛鉱構造 diamond structure zinc-blende structure 1 R = ( a1 + a2 + a3 ) 4 1 R = ( a1 + a2 + a3 ) 4 C, Si, Ge GaN, GaAs, ZnSe, CdTe 1) 結晶の構造 ー周期性と並進対称性ー 典型的な結晶構造 (2) CsCl構造 cesium chloride structure NaCl 構造 sodium chloride structure scc https://lampx.tugraz.at/~hadley/ss2/problems/ti/q1.php fcc

h"p://britneyspears.ac/physics/crystals/wcrystals.htm n( r ) n( r + t ) = n( r ) ( ) = n G G n r e i G r n( r + t ) = n( r ) e i G t t n = n 1 a + n2 b + n3 c G = 1

基本逆格子ベクトル b c A = 2π, B = 2π a b c c a, C = 2π a b c A a = 2π, A b = 0, B a = 0, B b = 2π, C a = 0 C b = 0 A c = 0 B c = 0 C c = 2π G = ha + kb + lc 逆格子ベクトル a b a b c ( h, k, l Z ) 2) 結晶構造の判定法 逆格子点の幾何学的意味 面ABC にOからおろした垂線の足 c C c ON = d b d R a N B ON OR = 2π となる ON 上の点 R! b 逆格子ベクトルの定義再考 O V = a b c = d ( a b sin θ ) C の大きさ 2π A a OR = 2π 2π a b 2π a b d C = = = d V d ( a b sin θ ) 2π a b a b C の向きまで考慮して C= = 2π V c a b 2) 結晶構造の判定法

k k exp i( k k ) r 2πrsinθ λ 2πrsin θ λ r O k k λ 0.1 nm = k r k r = ( k k ) r k r = kr cosϕ = krsinθ k r = k r cos ϕ = k rsin θ @ V = 10kV k = k = k = 2π λ CharacterisLcIradiaLonI X BremsstrahlungI X h"ps://miac.unibas.ch/pmi/01@ BasicsOfXray.html h"ps://physics.stackexchange.com/queslons/ 20385/peaks@on@top@of@bremsstrahlung Cu K α 1.54 Å! Mo K α 0.71 Å

回折条件 Bragg条件 強め合いの条件 k k R = 2π n ( n N ) R = n a + n b + n c は格子ベクトルで R a b c k k = nghkl Laue 条件 逆格子ベクトルによれば k k 4π sin θ k k = λ (hkl) 2π θ Ghkl k k = n d θ k d 2d sin θ = nλ (hkl) Bragg 条件 ( ) ( Ewald 球の考え方 [0 結晶方位を決定] k O Ghkl ) 1) 入射ベクトルを描く 2) 半径 k の球を描く k 3) 球上の逆格子点が散乱方向 C k P

X線スペクトルの影響 特性X線 Ewald球ひとつ 反射点が少ない k O Ghkl 連続X線 Ewald球が沢山 反射点が沢山 C k P X線回折の種類 1) 単結晶X線回折 背面Laue法など SiIcrystalI(111)IbackwardIreflecLon h"p://mullwire.com/index.shtml h"p://minerva.union.edu/jonesc/photos %20ScienLfic.html

Photo51 超有名な単結晶回折の例 IAderIRaymondIGoslingI(RosalindIFranklin) h"ps://en.wikipedia.org/wiki/photo_51 h"ps://jp.pinterest.com/explore/dna@model/ ら線 単一ヘリックス 構造の回折パターン h"ps://www.aps.org/meelngs/march/vpr/2010/imagegallery/franklin.cfm

2) 粉末X線回折 θ-2θ法 (004)I ϕiscans (404)I (404)I h"ps://www.intechopen.com/books/ superconductors@new@developments/a@ fluorine@free@oxalate@route@for@the@ chemical@solulon@deposilon@of@ yba2cu3o7@films 3)Debye-Scherrer法 AI240 nmithickinico2o4ifilmigrowniati350 CI onimgal2o4i(001)isubstrate.i h"ps://www.researchgate.net/figure/ 257951207_fig2_Color@online@a@HR@XRD@2th@th@scan@ of@a@240nm@thick@nico2o4@film@grown@at@350c@on 粉末X線回折法 h"p://pd.chem.ucl.ac.uk/pdnn/inst2/linearea.htm h"p://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/11/aac/vorlesung/ kap_5/vlu/kristallstrukturanalyse.vlu/page/vsc/de/ch/11/aac/vorlesung/ kap_5/kap5_7/kap57_2.vscml.html

散乱条件 全散乱波の振幅 n( r ) の空間積分 原子内の電子密度 A (t ) = dr n(r ) exp( iδk r ) e iω t 散乱波の強度 ここに Δk k k 2 2 I Δk A dr n(r ) exp( iδk r ) ( ) ig r n ( r ) = ng e を入れれば 2 I Δk A ( ) G 位相整合条件 構造因子 k Ghkl 2θ 2 i G Δk r ( n d r G e ) G V (G = Δk ) ) = 0 (G Δk ) i G Δk r ( d r e (structure factor) nhkl k 原子散乱因子 結晶構造因子 1 = dr n(r ) exp( ig r ) Vc 1 ig r ig r = e dr n(r )e Vc i i 結晶構造因子 原子散乱因子 fi = dr n(r ) exp( ig r ) sin ( 2kr sin θ ) = 4π dr n(r ) r 2 2kr sin θ Shkl = fi e i ighkl ri

S = f i e 2πi hn 1+kn 2 +ln 3 i πi ( h+k+l ) { = e = f i i r 1 = ( 0, 0, 0), r 2 = 1 2, 1 2, 1 2 ( ) 0 (h + k + l : odd) 2 f (h + k + l : even) (100) Cs +, I (200) S KCl = f (1+ e πih + e πik + e πil ) 0 (h, k,l : odd) = 4 f (otherwise) KCl (220) (420) (400) (222) S KBr = f i e 2πi ( hn 1+kn 2 +ln 3 ) i 0 (h, k, l : odd, even mixed) = 4 f (otherwise) KBr (200) Figure 17 Comparison of x-ray reflections from KCl and KBr powders. In KCl the numbers of electrons of K and Cl ions are equal. The scattering amplitudes f(k ) and f(cl ) are almost exactly equal, so that the crystal looks to x-rays as if it were a monatomic simple cubic lattice of lattice constant a/2. Only even integers occur in the reflection indices when these are based on a cubic lattice of lattice constant a. In KBr the form factor of Br is quite different to that of K, and all reflections of the fcc lattice are present. (Courtesy of R. van Nordstrand.) (420) (400) (331) (222) (311) (220) (111) 80 70 60 50 40 30 20 2u C.IKi"el,IIntroducLonItoISolidIStateIPhysicsI(Wiley)

点群 有限サイズ と空間群 無限サイズ 回転対称性 360 o 回転軸の周りに 回して重なる n C180 (2) C90 (4) ( x, y, z ) ( x, y, z ) ( x, y, z ) ( y, x, z ) C120 (3) C60 (6) ( x, y, z ) ( R120 (x, y), z ) 回反対称性 ( x, y, z ) ( R60 (x, y), z ) 回転操作の後 対称点に関して反転 1回回反対称 反転) 2回回反対称 =鏡映) (1) ( x, y, z ) ( x, y, z ) (2) ( x, y, z ) ( x, y, z ) 4回回反対称 (4) ( x, y, z ) ( y, x, z )

n m 360 o n 1 n x 4 1 ( x, y, z) ( x +1 2, y, z) z ( x, y, z) ( y, x, z +1 4) ( x, y, z) ( x + a, y, z) ( ) = ( a b) c a b c e a e = e a = a a a 1 = a 1 a = e a 1

C n (n = 2, 3, 4, 6) xy ( x, y, z) x, y, z ( ) ( x, y, z) x, y, z ( ) n