VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

Similar documents

tnbp59-21_Web:P2/ky132379509610002944

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

数学Ⅱ演習(足助・09夏)


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

DVIOUT-HYOU

Chap9.dvi

Jacobson Prime Avoidance

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

limit&derivative

家族を強める

chapter4.PDF

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

プリント

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D


zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x


D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

( ) ( )


x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

koji07-01.dvi

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I , : ~/math/functional-analysis/functional-analysis-1.tex

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

i

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Part () () Γ Part ,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

II

lecture_0

linearal1.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

431 a s a s a s d a s a 10 d s 11 f a 12 g s 13 a 14 a 15


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

2000年度『数学展望 I』講義録

meiji_resume_1.PDF

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

A


y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

newmain.dvi

zsj2017 (Toyama) program.pdf


_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

入試の軌跡

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

研修コーナー

表1-表4_05

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

極限

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

Transcription:

3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n f f λ,..., λ r V = V λ V λr V λ λ f VI. V.9 VI. 4. VI.() 3 C V z C s, t z = s + t (s, t R)

= s z t z s = Re(z), t = Im(z) z = s + t C z z = s t z, w C z = z, z + w = z + w, zw = z w, z = (z 0). z z C z = z z = s + t C z z = zz = s + t z = z A = [a j A = [a j C n a b a =., b =. Cn a n b n a b = t ab = a b + + a n b n C n a b

3 3 a, b, c C n, k C a + b c = a c + b c a (b + c) = a b + a c (ka) b = k(a b) a (kb) = k(a b) a b = b a a a 0. a = 0 a, b, c k R R n C n, n a C n a a = a a + 3. a =, b = 0 () a b () b a () a 3.. V a, b V (a, b) V

4 a, b, c V, k C (a + b, c) = (a, c) + (b, c) (a, b + c) = (a, b) + (a, c) (ka, b) = k(a, b) (a, kb) = k(a, b) (a, b) = (b, a) (a, a) 0 a = 0 3.. V () a V a = (a, a) a () a, b V (a, b) = 0 a b 3. a = 0, b = C 3.5 3.3 a, b V () (a, b) a b () a + b a + b ( ) ( )..5 () a = 0 0 a 0 s, t C

3 5 0 (sa + tb, sa + tb) = a s + (a, b)st + (a, b)ts + b t s = b, t = (a, b) a b 4 (a, b) b + b (a, b) = b ( a b (a, b) ). () a + b = a + (a, b) + (a, b) + b a + (a, b) + b a + a b + b = ( a + b ) V (u,..., u n ) (u, u j ) = δ j V (u,..., u n ) V V C n 3.4 U = (u,..., u n ) V a = a u + + a n u n, b = b u + + b n u n V (a, b) = a b + + a n b n. a b a b U.,. a n b n

. n n (a, b) = (a u + + a nu n, b u + + b nu n) = a b j(u, u j). = j= (u, u j) = δ j = j n (a, b) = a b. = 0 3.5 W V W V (u,..., u r ) W a V W P W (a) = (a, u ) u u + + (a, u r) u r u r P W (a) W a P W (a) W. 7. P W (a) W W b = b u + + b r u r (b, a P W (a)) = (b, a) (b, P W (a)). (b, a) = (b u + + b r u r, a) = b (u, a) + + b r (u r, a). 3.4 ( (b, P W (a)) = b u + + b r u r, (a, u ) u u + + (a, u ) r) u r u r = b (a, u ) + + b r (a, u r ) = b (u, a) + + b r (u r, a). (b, a P W (a)) = 0

3 7 3. 0 a,..., a r V. 7.7 7.5 3.3 3 0 0 0,, 5 4 3 V V f V a, b V (f(a), f(b)) = (a, b) (3.) 3. f V (u,..., u n) V (f(u ),..., f(u n )) V U = (u,..., u n ) V V f U A a, b V U x = [a U, y = [b U a = (u,..., u n )x, b = (u,..., u n )y

8 a, b f f(a) = (f(u ),..., f(u n ))x, f(b) = (f(u ),..., f(u n ))y. A f(a) = (u,..., u n )Ax, f(b) = (u,..., u n )Ay. f (3.) 3.4 Ax Ay = x y t x t AAy = t xy 3. A t AA = E V f (f(a), b) = (a, f (b)) a, b f f V f A f B Ax y = x By t x t Ay = t xb y. x, y B = t A A = t A A

3 9 A A A = E C n 3. n A = [a a n () A () (a,..., a n ) n () x C n Ax = x. () (). t AA = E t a. t a n [a a n = E. (, j) t a a j a a j = δ j () = (). t AA = E Ax = Ax Ax = t x t AAx = t xx = x. () () = (). x, y C n A(x + y) Ax Ay = x + y x y. A(x + y) Ax Ay = (A(x + y)) (A(x + y)) Ax Ax Ay Ay = t (x + y) t AA (x + y) t x t AAx t y t AAy = t x t AAy + t y t AAx. t x t AAy + t y t AAx = x + y x y. t AA (s, t) b st x = e s, y = e t b st + b ts = e s + e t e t e s = δ st, x = e s, y = e t b st + b ts = e s + e t e s e t = 0.

0 t ( t AA) = t AA = t AA b ts = b st. b st + b st = δ st, b st + b st = 0 b st = δ st t AA = E. 3. n A U U AU U AU = D DD = DD AA = (UDU )(UDU ) = UDDU = UDDU = (UDU )(UDU ) = A A 3.3. AA = A A A 3.3 A A = A A = A 3.4 n A A. A n

3 α A V α α b V α A(A b) = A (Ab) = αa b A b V α a V α Aa b = a A b = 0. Aa V α V α A V α (u,..., u m ) V α (u m+,..., u n ) V α (u,..., u n ) V [ αem O (Au,..., Au n ) = (u,..., u n ) O A U = [u u n U [ U αem O AU =. O A [ [ [ ααem O αem O αem O = = (U AU)(U A U) O A A O A O A [ = U AA U = U AA ααem O U = = O A A A A = A A. A n m [ U U A U = D Em O X = U O U [ αem O X AX = O D A α,..., α k A C n A ( 4.) VI., VI. C n = V α V αk

A 9. 3.5 3. ( ) A n α,..., α r A P,..., P r P = P = P ( r), P P j = O ( j), E = P + + P r A = α P + + α r P r A. A C n = V α V αr x C n x = x + + x r (x V α ) =,..., r P x x P P x = P (P x) = P x = x P = P C n y = y + + y k y V α 3.5 P x y = x P y, P x y = x (y + + y k ) = x y = x y. x P y = y = P y. P = P j x, y C n P P j x y = P j x P y = 0.

3 3 P P j = O x C n x = P x + + P rx P + + P r = E. (α P + + α r P r )x = α P x + + α r P r x = A(P x) + + A(P rx) = A(P x + + P rx) = Ax A = α P + + α rp r A = α P + +α r P r W = ImP y = P x W Ay = (α P + + α r P r )P x = α P x = α y y V α. W V α. C n = W W r W = V α. P W P = P. 3.5 0 3.7 A = 0 0 A A = A AA = A = A A A λ F A (λ) = det(λe A) = λ = t 3 + 3t + = (t )(t + ). λ λ = 0 E A = 0. 0 0 0 t t t. λ = t

4 a = λ = E A = 0 0 0. 0 0 0 s t s, t s = s + t 0. t 0 a =, a3 = 0 (a, a3) 0 b =, b 3 = a 3 a = 0 a, b, b 3 u = 3, u =, u 3 = 0 U = [u u u 3 0 0 U AU = 0 0. 0 0 A (e, e, e 3) (e, e, e 3 ) = (u, u, u 3 )P P = [p j U =

3 5 [u u u 3 P = U = U = t u t u t u 3 = 3 3 3 0 V P = [p u p u p 3 u = u t u = 3 3 3 3 V P = [p u + p 3 u 3 p u + p 3 u 3 p 3 u 3 + p 33 u 3 = [u [t u 3 u t u 3 = 3 3 P + P = E A A = 3 3 3 3 3 3 3 3 3 3 3 5. 3 3 5 0 3.4 A = 0 0 0 0 3.8 3. α, β P + P = E, A = αp + βp A αe = αp + βp αp αp = (β α)p. A βe = (α β)p., P = (β α) (A αe), P = (α β) (A βe). 3.5 A α A x A x = αx

3.9 A () A A () A A. A U λ O U AU =.... O λ n λ,..., λ n A D A (U AU) = U A U = U AU D = U AU D = D = D. λ D = D. A = UDU = UD U = (UDU ) = A A A D D D = E. λ = λ λ = λ =. A A U U 3.0 A A A. A P D P AP = D. P = t P, t D = D t A = t (P DP ) = t (P D t P ) = t ( t P ) t D t P = P D t P = P DP = A. A A A A

VII 7 A VII [B VII.5 W,... W r V V = W W r V x = x + + x r (x W ) φ ( r) φ : V V, x x V W () φ V () φ φ = φ, φ = φ V V W W () j (x, y) = 0 x W, y W j φ φ j = 0. 3. () + 3 () 3 () 7 [ t a [ 3. x a, b t x = 0. a b x = 0. b +. 3.3 0,, 3 3 4 3. (f(u ), f(u j )) = (u, u j ) = δ j

8 3. (u,..., u n), (v,..., v n) (u,..., u n) = (v,..., v n)p P P p u (v,..., v n ) 3.4 δ j = (u, u j ) = p p j. (p,..., p n ) 3.3 3.4 0 3 0 0 U = 3 3 3, U AU = 0 3 0. 0 0 0 A = 3 3 3 3 3 3 3 3. 3 3 3 3. 0 0 0 0 0 3 3. 0 3 3 3.5 A A = α P + + α rp r α = α A = α P + + α r P r. x α P x = 0 ( =,..., r). A x = α P x = αx. x V α A(A x) = A (Ax) = αa x. A x V α V α (u,..., u s) (A u, u j ) = (u, Au j ) = α(u, u j ) = αδ j. A u = αu. x V α u,..., u s A x = αx VII.5 () φ (φ (x)) = φ (x ) = x = φ (x). V = W W x = x + (x + + x + x + + + x r) x = x + + x + x + + + x r W. W y = y + y (φ (x), y) = (x, y + y ) = (x, y ) = (x, φ (y)), (φ (x), y) = (x, φ (y)).

VII 9 (x, φ (y)) = (x, φ (y)) x V (x, φ (y) φ (y)) = 0. φ (y) φ (y) V = {0}. φ φ = φ, φ = φ V W = Imφ x = x + x (x W, x W ) φ(x) = φ(x ) + φ(x ). x W = Imφ x = φ(y) φ(x ) = φ(φ(y)) = φ(y) = x. y V φ(y) W (φ(x ), y) = (x, φ(y)) = 0. φ(x ) = 0. φ(x) = x φ W () = x W, y W j (x, y) = (φ (x), φ j (y)) = (x, φ φ j (y)) = (x, 0) = 0.