和佐田P indd

Similar documents
和佐田 裕昭P indd

和佐田P indd

P 和佐田.indd

P 和佐田.indd

P 和佐田.indd

Platypus-QM β ( )

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A


Microsoft Excelを用いた分子軌道の描画の実習

第52回日本生殖医学会総会・学術講演会

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

化学特別講義(計算化学)


講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

Microsoft Word - abstract-example.doc

エネルギー分解における分子の安定化要因の特定法の提案

量子化学計算の大規模化1

PowerPoint プレゼンテーション

<4D F736F F D20348FCD94F18C6F8CB AA8E718B4F93B92E646F6378>

,

大規模共有メモリーシステムでのGAMESSの利点

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

パーキンソン病治療ガイドライン2002

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

本文27/A(CD-ROM

p1_5.pmd

tnbp59-20_Web:P1/ky108679509610002943

CW3_A12220D27.indd

Structure and Strength of Acid-Base in Aqueous Medium Aritsune KAJI* and Masaru NAKAHARA* * Department of Chemistry, Faculty of Science, Kyoto Univers

D:/cssj/jcs/v7n2/a5tex/TX2.dvi

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

1

PowerPoint プレゼンテーション

P 和佐田.indd

untitled

量子情報科学−情報科学の物理限界への挑戦- 2018


表 参照文献 ( 文献 ). 185, Expert Nurse. 1211, suppl, , CNS 2000, , , , 4

目次 Gaussian 利用の手引き 1 1. はじめに 利用できるバージョン 概要 マニュアル 2 2. TSUBAME での利用方法 Gaussian の実行 2 (1) TSUBAMEにログイン 2 (2) バージョンの切り替え 2 (3) イン

1) J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, C. S. Pote, "Landolt-BOrnstein Tables", New Series, Vol. 7, Springer, Heidelber

11-和佐田祐子.indd

PowerPoint プレゼンテーション

Ł\”ƒ-2005

vdw-df vdw-df vdw-df 2

陽電子科学 第4号 (2015) 3-8

β

光学

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

chap1_MDpotentials.ppt

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1

1 1.1 (JCPRG) 30 Nuclear Reaction Data File (NRDF) PC GSYS2.4 JCPRG GSYS2.4 Java Windows, Linux, Max OS X, FreeBSD GUI PNG, GIF, JPEG X Y GSYS2

SEJulyMs更新V7

dプログラム_1

Microsoft PowerPoint - 基礎化学4revPart2 [互換モード]

 

日本人の子育て観-JGSS-2008 データに見る社会の育児能力に対する評価-

Microsoft Word - 紀要 doc

Gaussian & WebMO II. 構造の入力 (4) New Job メニューの Create New Job をクリックすると, 分子編集用の Editor が現れる ログアウトは右上端の Logout をクリックする

4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t r t = Benefit view dp

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

DP

1. TSUBAME2.5 通常実行まで 1.1. 環境設定 (MPI ライブラリ & コンパイラ ) まずは para-tcci で使用する環境変数を.bashrc に定義します. 後述の Scalasca で OpenMPI を使用するため, ここでも最新の OpenMPI と Intel コン

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

1

X線分析の進歩36 別刷

グラフ数値読み取りシステム (GSYS2.4) 利用の手引

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

加速器の基本概念 V : 高周波加速の基礎

4/15 No.

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

200708_LesHouches_02.ppt

joho09.ppt

02-量子力学の復習

1 2 2 (Dielecrics) Maxwell ( ) D H

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

…h…L…–…†…fi…g1

第1章 はじめに

三石貴志.indd

1 FMO RHF MP2 MP2 RI MP2 RHF RHF 2

01社会学部研究紀要.indd

34号 目 次

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

53

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

MOTIF XF 取扱説明書

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

分子モデリングセミナー第1回


第14章 ステレオグラフ

【知事入れ版】270804_鳥取県人口ビジョン素案

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

( β K ) p β W W p β K K aβ β W W β β K K ) 1/(βW +β K ) 3 ln C =lnα + 1 β W + β K ln Q (3) 1/(β W + β K ) ( β W + β K ) 4 ( ) ( ) ( ) ( 1998

一般演題(ポスター)

パワーMOS FET π-MOS

Transcription:

B3LYP/6-31G* Hartree-Fock B3LYP Hartree-Fock 6-31G* Hartree-Fock LCAO Linear Combination of Atomic Orbitals Gauss Gaussian-Type Orbital: GTO Gaussian- Type Function: GTF 2 23 1 1 X, Y, Z x, y, z l m n s p d f 0 1 2 3 Slater Slater-Type Orbital: STO Slater-Type Function: STF 2 2 Gauss 1 STO-1G

0.03 0.6 波動関数 (a.u. 3/2 ) 0.5 0.4 0.3 0.2 波動関数 (a.u. 3/2 ) 0.02 0.01 STO-3G STO-3Gの原始 GTF STO-1G の厳密解 0.1 0.00 3.0 4.0 5.0 6.0 r (a.u.) 0.0 0.0 1.0 2.0 3.0 4.0 5.0 動径 r (a.u.) Gauss Gauss Contracted GTF: CGTF 1 CGTF GTF Gauss primitive GTF CGTF 2 LCAO CGTF 2 2s 2p p x p y p z 1 CGTF 2 p p x p y p z shell p p-shell shell s p sp-shell Gaussian STO-3G LANL2MB STO-3G Slater 3 GTF CGTF STO

1RHF/STO-3G 合計 7 個の基底関数 Minimal Basis Sets O 2s 2p 5 個の基底関数 H 1 個の基底関数 5 + 2 1 = 7 2RHF/3-21G 合計 13 個の基底関数 Split Valence Basis Sets O 9 個の基底関数 H 2 個の基底関数 2s' 2p' ' 2s 2p C 1 + C 2 = 9 + 2 2 = 13 3RHF/6-31G(d) 合計 19 個の基底関数 Polarized Basis Sets O 15 個の基底関数 H 2 個の基底関数 2s' 2p' d ' 2s 2p C 1 + C 2 = 15 + 2 2 = 19 4RHF/6-311G(d,p) 合計 31 個の基底関数 O 19 個の基底関数 H 6 個の基底関数 2s" 2p" d " p 2s' 2p' ' 2s 2p 5RHF/6-311+G(d,p) 合計 35 個の基底関数 Diffuse Basis Sets O 23 個の基底関数 H 6 個の基底関数 2s''' 2p''' d " p 2s" 2p" ' 2s' 2p' 2s 2p C 1 + C 2 23 + 2 6 = 35 6RHF/6-311+G(2d,p) 合計 41 個の基底関数 O 29 個の基底関数 H 6 個の基底関数 2s''' 2p''' d' 2s" 2s' 2s 2p" d 2p' 2p " p ' 29 + 2 6 = 41 7RHF/6-311++G(3df,3pd) 合計 80 個の基底関数 O 42 個の基底関数 H 19 個の基底関数 f d" p" d 2s''' 2p''' d' " p' 2s" 2p" d " p 2s' 2p' ' 2s 2p = 19 + 2 6 = 31 42 + 2 19 = 80 CGTF CGTF GTF 2 3-21G 2s 2p 2s' 2p' 6-31G 6 GTF 1 CGTF 3 GTF CGTF GTF Pople GTF GTF 3 STO-3G 3 3 GTF 2 1 3-21G GTF 3-21G Gaussian D95 Huzinaga-Dunning D95 full double-zeta double-zeta full

split-valence Pople 2p 2 6-31G(d) 6-31G* 2p 6 d d 5 6 d 10 f 6-311G(d,p) 6-311G** s p 6-31G 6-311G * * 3-21G* 3-21G * shell 2 6-311 G(2d,p) diffuse d d' d-shell Rydberg diffuse 2 6-311 G(d,p) 2s 2p sp-shell s s' s'' p p' p'' 12 s''' p''' diffuse 2diffuse 6-311 G 3df,3dp 2 diffuse Gaussian diffuse 6-311G(d',p) 6-311G(3df',3dp') '

6-31G 6-311G 4p 5 diffuse d f 5 7 1 d d xy d yz d zx d x 2 d y 2 d z 2 6 f 10 d d x 2 d y 2 d z 2 d x 2 y d 2 x 2 2 2z 2 x 2 y y 2 z 2 expr 2 3s f 7 f 3 4p d 5 d 6 Cartesian d Gaussian 6-31G Cartesian d d 3 d Cartesian d Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 27 0-0.308996-9.928387-6.504069 2 7 0 1.942751-13.434068-6.693455 : 83 1 0 2.144647 1.906632-0.168243 84 1 0 2.004350 5.270336-0.089587 --------------------------------------------------------------------- Rotational constants (GHZ): 0.1468432 0.0201315 0.0196003 General basis read from cards: (5D, 7F) Centers: 15 43 LANL2MB Centers: 1 44 S 5 1.0 Exponent= 2.7378683974D+04 Coefficients= 5.2185000000D-03 : Exponent= 3.4061342610D+01 Coefficients= 6.0251974300D-03 Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned off. 318 basis functions, 1446 primitive gaussians, 322 cartesian basis functions 215 alpha electrons 209 beta electrons nuclear repulsion energy 9068.3980646382 Hartrees. :

[1,2] 4 HF STO-3G CISD CISD(T) CCSD CCSD(T) RHF/3-21G CISD/STO-3G MPn CI CCSD post-hartree-fock Rydberg diffuse 1 Hartree-Fock Hartree-Fock DZP Hartree-Fock 0.02 Å [1-3] post-scf [3] d [4] FSO HF/4-31G S-O 0.22 Å F-O 0.10 Å 0.04 Å [1-4] [5] Cu Cu 3 4 [Cu H 2 O 3 ] [Cu H 2 O 4 ] Cu [Cu H 2 O 2 ] H 2 O [Cu H 2 O 2 ] 2H 2 O s p [1] double-zeta

6-31G* 6-31 G* 4-31G 6-31G CI [3] Basis Set Superposition Error: BSSE BSSE A B AB A B A B B A A B BSSE diffuse BSSE BSSE kcal/mol kcal/mol van der Waals BSSE van der Waals BSSE triple-zeta diffuse [2,6] HF 2 H 2 O 2 6-311 G(d,p) Hartree-Fock MP2 BLYP [6] ccpvxz HF/cc-pVDZ 6-31G(d,p) cc-pvtz van der Waals Hartree-Fock post-scf MP2/d-aug-cc-pVDZ diffuse

diffuse [2] STO-3G 6-31G(d,p) 4 O O H H H H STO-3G 6-31G(d,p) STO-3G OH Mulliken population analysis Gaussian Hartree-Fock Mulliken population analysis Mulliken population diffuse Mulliken population 6-31G* diffuse diffuse

Gaussian Gaussian 03 [7] http://www.gaussian.com/g_ur/m_basis_sets.htm 1 6-31G(d,p) B3LYP #p B3LYP/6-31G d,p... d f 5D 6D 7F 10F d #p B3LYP/6-31G d,p 5D... double-zeta BSSE diffuse ExtraBasis #P B3LYP 6-31G EXTRABASIS 5D tetraaquacopper(ii) 2 2 Cu 0.000000 0.000000 0.000000 O 1.969513 0.000000 0.156239 H -0.024386 0.612451-2.853595 O 0 D 1 1.00 0.80 1.0000 [Cu H 2 O 4 ] 2 6-31G 0.8 d

3 #P B3LYP GEN 5D tetraaquacopper(ii) 2 2 Cu 0.000000 0.000000 0.000000 O 1.969513 0.000000 0.156239 H -0.024386 0.612451-2.853595 Cu 0 6-311G P 1 1.5 0.083141 1.000000000 P 1 1.5 0.018137 1.000000000 O H 0 6-31G* O H 6-31G* Cu 6-311G Wachters 4p [8] 6-31G* t- STO-3G Z 11 10 2 4 1 5 14 7 12 13 3 6 8 9

X 5 diffuse 6-31 G(d) 6-31G(d) BSSE GTO 3 d i i N f [9] 4 GFINPUT IOP 3/24 10 [9,10] http://www.nsc.nagoya-cu.ac.jp/~htatewak [9,11] O 0 0 shell s p d... sp N f 1.0 O s 5 1 GTF GTF i d i 5 5 2s 3 s 2p 5 p

# RHF GEN Water 0 1 O H 1 R1 H 1 R1 2 T1 R1 0.96 T1 100.0 O 0 S 5 1.00 0.2115100432D+04 0.5949799655D-02 0.3181955677D+03 0.4426759743D-01 0.7219585870D+02 0.1955366886D+00 0.2006208970D+02 0.4859456718D+00 0.6098555700D+01 0.4145343759D+00 S 3 1.00 0.1022559470D+02-0.8381059967D-01 0.9342879000D+00 0.5723663977D+00 0.2864004000D+00 0.5127552980D+00 P 5 1.00 0.3447367890D+02 0.1591389954D-01 0.7752795300D+01 0.9962999709D-01 0.2282404500D+01 0.3099471910D+00 0.7169366000D+00 0.4906337857D+00 0.2144578000D+00 0.3373125902D+00 H 0 S 5 1.0 0.1030724159E+00 0.3854573041E+00 0.3272304205E+00 0.5030411123E+00 0.1164662665E+01 0.2018972538E+00 0.5123574957E+01 0.4502109049E-01 0.3406134261E+02 0.6025197430E-02 diffuse diffuse ECP diffuse [12,13] CEP-121G diffuse diffuse even-tempered [2] I I

#P B3LYP CEP-121G GFINPUT I, CEP-121G -1 1 I Gaussian : Standard basis: CEP-121G(6D, 10F) Basis set in the form of general basis input: 1 0 SP 4 1.00 0.2625000000D+01 0.7366000000D-01-0.8880000000D-02 0.1014000000D+01-0.8368700000D+00-0.2573510000D+00 0.5009000000D+00 0.6562470000D+00 0.4553680000D+00 0.2023000000D+00 0.9007440000D+00 0.7601070000D+00 SP 1 1.00 0.7800000000D-01 0.1000000000D+01 0.1000000000D+01 : 0.2023 0.078 0.3856 0.078 0.3856 0.0301 B3LYP 0.02 0.03 0.04 #P B3LYP CEP-121G EXTRABASIS GFINPUT I, CEP-121G -1 1 I I 0 SP 1 1.0 0.03 1.0 1.0 1 a.u. 0.02 11.542489 0.03 11.542970 0.04 11.542870 x y y 2.9075x 2 0.19347x 11.53978

x 0.19347/ 2 2.9075 0.033 l 4 [2] 4 ave r max Gaussian 03 diffuse diffuse [ 1 ] A. Szabo and N. S. Ostlund "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory", Dover, 1996 3 7,, 1987 [ 2 ] T. Helgaker, P. Jørgensen, and J. Olsen "Molecular Electronic-Structure Theory", John Wiley & Sons Ltd., New York 2000 8 [ 3 ] S. Iwata "Reliability of Ab Initio Calculations" in K. Ohno and K. Morokuma, ed. "Physical Science Data 12 Quantum Chemistry Literature Data Base", Elsevier, Tokyo 1982 [ 4 ] 1983 [3] 7 5

[ 5 ] C. W. Bauschlicher, Jr., S. R. Langhoff and H. Partridge J. Chem. Phys. 94, 2068-2072 1991 [ 6 ] N. R. Kestner and J. E. Combariza "Reviews in Computational Chemistry", 13, 99-132 1999 [ 7 ] Æ. Frisch, M. J. Frisch and G. W. Trucks "Gaussian 03 User's Reference" Gaussian, Inc. 2003 [ 8 ] A. J. H. Wachters J. Chem. Phys. 52, 1033-1036 1970 [ 9 ] http://setani.sci.hokudai.ac.jp/qc/basis/ http://www.emsl.pnl.gov/forms/basisform.html Basis Set Order Form [10] H. Tatewaki and T. Koga. J. Chem. Phys. 104, 8493 1996 [11] H. Yamamoto, and O. Matsuoka Bulletin of the University of Electro-Communications, 5-1, 23 1992 [12] S. Huzinaga, ed. "Physical Science Data 16 Gaussian Basis Sets for Molecular Calculations", Elsevier, Tokyo 1984 [13] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking Chem. Phys. Lett. 111-114 1993