rcnp01may-2

Similar documents
Mott散乱によるParity対称性の破れを検証

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

main.dvi

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Electron Ion Collider と ILC-N 宮地義之 山形大学

untitled

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

Microsoft PowerPoint - okamura.ppt[読み取り専用]

日本内科学会雑誌第102巻第4号

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

スライド 1


positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

GJG160842_O.QXD

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

FPWS2018講義千代

Solar Flare neutrino for Super Novae Conference

Strangeness spin in the proton studied with neutrino scattering

1 2 2 (Dielecrics) Maxwell ( ) D H

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

RA宣言.PDF

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

Canvas-tr01(title).cv3


untitled

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz


(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a


J-PARC October 14-15, 2005 KEK

PDF

総研大恒星進化概要.dvi

PowerPoint Presentation

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

untitled

untitled

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

LLG-R8.Nisus.pdf

25 3 4

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

03J_sources.key

LEPS

,,..,. 1

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary


1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

nenmatsu5c19_web.key

PowerPoint Presentation

untitled

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

B

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

main.dvi

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

untitled


日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

C: PC H19 A5 2.BUN Ohm s law

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

放射線化学, 92, 39 (2011)


数学概論I

スライド タイトルなし

E930

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

TeV b,c,τ KEK/ ) ICEPP


2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

Part () () Γ Part ,

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3


δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

From Evans Application Notes

27

Muon Muon Muon lif

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m


eto-vol2.prepri.dvi

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Microsoft PowerPoint - hihr08.ppt

PowerPoint プレゼンテーション

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

Transcription:

E22 RCP Ring-Cyclotron

97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ σ ) ( σ σ ) V = V + l SLS SLS Λ V = V l ALS ALS Λ Λ U LS Λ = VSLS + VALS 2

isospin Mesonic decay + isospin/2 or 3/2 + p MeV/c /2 rule I=/2 I=3/2 K decay Λ p + π 2 dominant n + π 2 on-mesonic decay + + p MeV/c K K 3

on-mesonic decay Decay branch Λ + p p + n a pn Λ + n n + n a = 2a nn pn " I = 2 rule" isospin= known CG isospin= Decay branch n p isospin Decay asymmetry decay asymmetry amplitude parity isospin a b α p Re[ 3a e* + b( c 2 d) * 3 f ( 2 c + d) *] c d Decay asymmetry p P V P C e f I P + - + + - -

Decay branchn p He bubble chamber counter experiment p He 2.2.8 nm H nm He R R J = J = = Spin Γ Γ ( Λ ) ( Λ ) He 2R + 3R + R nm n p p H 3R + R + 2R nm n n p R = 2R I=/2 rule n p 2 2 2 2 c + d + e + f a 2 2 + b Γp = > 37 3 Γ Λ. n ( He) R n R n a b c d e f I J L f 2 R p R p 5

Isospin Γ ( Λ H) Γ ( Λ He) 3( R R ) ( R R ) nm nm n n n p ( 2 ( 2 2 2 f c d e )) ( 2 2 a b ) = 3 + + + I J L f a R > R, c + d + e + f > a + b J = J = 2 2 2 2 2 2 R R c + d + e f J =, I= J =, I=, 2 2 2 2 2 2 2 2 2 2 f > c, d, e > a, b b c d e 2 f He bubble chamber 2 2 2 2 2 2 f >> a, b, c, d, e 6

Decay asymmetry p amplitude Counter experiment p - He bubble chamber p -.5 KEK-PS E6, E278 E6 2 Λ C, Λ B p = -.3. E278 5 Λ He p =.2.2 Branch asymmetry Asymmetry n n p systematic error KEK-PS E62 2 E n KEK-PS E62 5 Λ He 7

I Meson exchange model a I=/2 rule, K,, K*, exchange b 2 2 c + d > 2 2 2 2 f > a, b, e c d ( ) ( Γn / Γp, Γnm Λ H / Γnm Λ He) e α p f Quark exchange model I=/2 I=3/2 I=/2 f dominant K exchange I=3/2 a, b dominant exchange Amplitude I=/2 rule BL-AGS E93 J L f 2 meson ( Λ ) >. ( = 2) >. 7 ( = 3 2) Γp Γn H I or I K quark I=3/2 I=3/2 I=/2 8

I=/2 rule R.A. Schumacher, P A57 (992) 3c R R n p γ γ γ = Γnm γ γ γ ( Λ He) Γnm( Λ H) 5 γ = Γn Γp Λ He, γ 5 = Γn Γp = + 5 ( ) ( Λ He) 9

pn p Λ σ pn p Λ Γ p ( Λ p pn ) r r n( p, Λ ) p P p, α = p. 62 Λ π r Ap: n( p, Λ ) p helicity polarized beam, asymmetry ( Λ) A : n p, r p unpol. p beam, pol. in beam direction Λ A Λ α p T Ap Ap L r r Λ, Λ: n( p, Λ) p T or L pol. beam, polarization transfer abetani et al. amplitude PRC6 (999) 7

p s/p s-shell / p-shell physical background p + n p + Λ T = 368 MeV threshold p + n p + Σ T = 5 MeV + threshold p + n n + K + Λ T = 6. GeV threshold Tp = 6 MeV RCP Ring-Cyclotron Cross section Challenge cross section 39 2 5 σ pn p Λ cm = b instrumental background σ strong = 3 σ pn pλ

pnp Parreno et al., nucl-th/982 correlation 2

RCP Ring-Cyclotron Yield = σ ε cross section target beam event pn pλ tgt beam σ pn p Λ 39 cm 2 Γnm = vσ pn pλ ρn uλ dr efficiency 39 2 σ pn p Λ. 5 cm by Haidenbauer et al. 39 2 =. 5. cm by Parreno et al. 39 2. 5 cm by Inoue et al. event 2 event / day tgt = 2 neutron / cm 2 cm Cu beam = 2 proton / s 6nA( 6MeV proton) ε =. 25 MC: pn pλ Λ p + π 2 3 collimator 5 CDC+hodoscopep+π 2 invariant mass = m Λ SSDp+π vertex 5.. 5 R&D E22 3