Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

Similar documents
7-1yamazaki.pptx

日本内科学会雑誌第102巻第4号

BH BH BH BH Typeset by FoilTEX 2

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号


Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems


磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Ł\”ƒ-2005

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

第90回日本感染症学会学術講演会抄録(I)

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9


E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

GJG160842_O.QXD

untitled

PowerPoint Presentation

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

PowerPoint Presentation

Microsoft PowerPoint - takaahara

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

プログラム

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

総研大恒星進化概要.dvi

SN 2007bi Yoshida, T. & Umeda, H., MNRAS 412, L78-L82 (2011)


1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

プログラム

技術研究所 研究所報 No.80

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

SFN

QMI_10.dvi

s s U s L e A = P A l l + dl dε = dl l l

untitled

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

KENZOU Karman) x

スライド 1

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index


B

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

Contents 1 Jeans (

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

0201

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

「諸雑公文書」整理の中間報告

Untitled


/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

系外惑星大気

untitled

PowerPoint Presentation

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

抄録/抄録1    (1)V

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

A

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

nsg02-13/ky045059301600033210

H.Haken Synergetics 2nd (1978)


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

森羅万象2018のコピー

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

Quz Quz

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( )

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

X 20, 1 1 HETE-2 Swift CCD GRB CCD CCD CCD

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

研修コーナー

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

nakayama.key

tnbp59-21_Web:P2/ky132379509610002944

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

4 19

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

ohpr.dvi

4/15 No.

untitled

パーキンソン病治療ガイドライン2002

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

振動工学に基礎

201711grade1ouyou.pdf

日本目録規則1987年版改訂2版第2章図書改定案

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

東大阪地域活性化支援機構活動レポート2015 _061620

Transcription:

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, 732 26, 2011) AM + (in prep) 2011.12.28

GRB GRB. ex. GRB980425/SN1998bw, GRB030329/SN2003dh XRF060218/SN2006aj. GRB091127/SN2009nz XRF100316D/SN2010bh Spectrum :after a few days ~ after a month from the burst power law : afterglow time Explosion energy Mazzali et al. (2006) SN component appears Progenitor mass GRB λ(a)

Spectrum of GRB prompt emission Band function: Broken power-law α~ -1 E α+2 E 3 E β+2 Planckian GRB090902B Abdo+(20009) GeV component GRB990123 Briggs et al. (1999) 1 (T obs =T local Γ=const) Spectrum fitting function Band function (Band et al. 1993)

1 Planck GRB090902B

GRB090902B (Ryde + 2011) 1 Planck GRB

GRB090926B (Planck like) Planck MAXI Fermi/GBM Rayleigh-Jeans tail? Serino et al. (2011)

Photospheric + Monte Carlo simulation (photon transport) Pe'er (2008, 2011),Beloborodov(2010) τ Lazatti +(2009,2011) Nagakura + (2011) Mizuta+ (2011) Non-thermal Particle injection Beloborodov(2010) Pe'er (2011)

Lj=5.e50 erg/s [0:100s] Opening angle 10 degrees Γ 0 =5, ε 0 /c 2 =80 (h 0 ~106) Γ_max~h 0 Γ 0 (Bernoulli's principle) 2D (r x θ) axisymmetric, progenitor 14_sum,R*=4.e10cm (Woosley & Heger (2006)) + wind (r>r*) ρ r -2 2D-rela- hydro code(constant specific heat ratio=4/3) Mizuta et al. (2004,2006) + MPI

Lj=5.e50 erg/s [0:100s] Opening angle 10 degrees Γ 0 =5, ε 0 /c 2 =80 (h 0 ~106) Γ_max~h 0 Γ 0 (Bernoulli's principle) 2D (r x θ) axisymmetric, progenitor 14_sum,R*=4.e10cm (Woosley & Heger (2006)) + wind (r>r*) ρ r -2 2D-rela- hydro code(constant specific heat ratio=4/3) Mizuta et al. (2004,2006) + MPI

log10(ρ/cm^3) Backflow Shock-break Interaction between jet and progenitor envelopes. Γ internal shocks High pressure cocoon confinement and a bent backflow enhance the appearance of internal oblique shocks. The jet includes knotty structure. AM, Kino, Nagakura('10)

log10(ρ/cm^3) progenitor Expanding cocoon Expanding envelopes After shock-break I r~10^11cm 10 Γ jet

log10(ρ/cm^3) After shock-break II r~10^12 cm Free expanding region ~500 (=Γ0*h0=533) Γ Recollimation shock Bubble dissipated dissipated region // z Free expanding region // Cold Bullet free expansion no dissiparion

1/beaming factor ~ 1/Γ (for β // n: LOS) θ 0 θ 5 θ 10

Light curve Dissipated region Free expanding region Γ Bullet dissipated Duration of light curve ~ jet injection. A few seconds time variability in early phase caused by internal discontinuity in the jet.

Duration / initial half opening angle θ0=10degrees 100s injection θ0=10degrees 30s injection Γ Cold Bullet free expandion Γ θ0=5degrees 100s injection Θ0=5 degrees 30s injection Γ Cold Bullet free expansion Γ

OA10 [0:100s] Light curves OA10 [0:30s] 100s Off-axsi OA05 [0:100s] OA5 [0:30s]

Lj=5.e50 erg/s [0:100/30s] Opening angle 10/5 degrees Γ 0 =100, h 0 ~5.3@r min =10 9 cm Γ_max~h 0 Γ 0 (fixed) θ0=10degrees 100s injection θ0=10degrees 30s injection θ0=5degrees 100s injection θ0=5degrees 30s injection much narrower structure

Light curves OA10 [0:100s] OA5 [0:30s] OA05 [0:100s]

Spectrum by numerical hydrodynamics Index~1(a=-1) IC index~2.5 (a=-2.5) Rayleigh-Jeans tail? GRB090926B θ0=10degrees 100s injection

Numerical Amati Relation GRB z>1 E iso Ep 2 Amati (Amati 2002,2006)

Numerical Yonetoku Relation is also found!! L iso_p E p 2 Yonetoku et al. 2004

dissipated region ( x 10 ) // for on-axis observer Free expanding // for off-axis observer Summary Spectrum off axis Planck like Band like) Numerical Amati and Yonetoku relations (