gk9c02a.dvi

Similar documents
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

I II

振動と波動

07.報文_及川ら-二校目.indd

高等学校学習指導要領

高等学校学習指導要領

meiji_resume_1.PDF

untitled

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Chap10.dvi

陦ィ邏・2

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

( ) x y f(x, y) = ax

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

untitled

ARspec_decomp.dvi

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

行列代数2010A

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

5b_08.dvi

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI


4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

II 2 II

48 * *2

i

untitled

genron-3

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

NewsLetter-No2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Microsoft Word - 学士論文(表紙).doc

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

ピラニ真空計

福岡大学人文論叢47-3


18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

28 Horizontal angle correction using straight line detection in an equirectangular image

Part () () Γ Part ,


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

untitled

untitled

untitled

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

chap03.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

untitled

JFE.dvi

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

1 I p2/30

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

PDF

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

(1) (2) (3) (4) (5) 2.1 ( ) 2

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

TOP URL 1

29

all.dvi


0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

Microsoft Word - 部材規格追記 doc

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


difgeo1.dvi

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

修士論文

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Microsoft Word - 計算力学2007有限要素法.doc

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

keisoku01.dvi

橡紙目次第1章1

dynamics-solution2.dvi

Transcription:

y y y Field Analysis in a Lossy Dielectric Sandwiched between Flanged Rectangular Waveguide and Conducting Plane Makoto HIRANO y, Masaharu TAKAHASHI y, and Minoru ABE y. ( ) [] [],[3] y Department of Electronics and Communication Engineering, Faculty of Engineering, Musashi Institute of Technology, -8-, Tamazutsumi, Setagaya-ku, Tokyo, 58-8557 Japan [] [4],[5]. C I Vol. J8 C I No. 9 pp. 55 536 999 9 55

'99/9 Vol. J8 C I No. 9 kl = μ l " l (i = I; II; l = ; ) (TE 0 ) TE mn, TM mn C mn ;D mn z = 0 0 E II = ( E I ; 0; (a) E II y = ( E I y ; 0; (b) H II = HI ; (c) Fig. Flanged rectangular waveguide and structure of the analysis (a) Flanged rectangular waveguide (b) Structure of the analysis (a) (b) (z < = 0) (TE 0 ) (z = 0) [4] (b) I II TE z ψ I, ψ II TM z i I, i II ψ r i ψ i i + kl i i i = 0 () Hy II = HI y ; (d) II C mn ;D mn II C mn ;D mn (c),(d) C mn ;D mn 8 P k I ki z μ m;n inly mk + P C(m; n; k; l) C P mn kyi I nly mk P D(m; n; k; l) D mn m;n >< >: = ki ki z μ i0ly k P C(; 0;k;l) P k I y ki z μ m;n inl mk + P Cy(m; n; k; l) C mn + P m;n k I i mk nl + P Dy(m; n; k; l) D mn = P Cy (; 0;k;l) (3) P C (m; n; k; l), P D (m; n; k; l); P Cy (m; n; k; l), P Dy (m; n; k; l) inly mk;imk nl. (3) C mn ;D mn I ( ) E y 56

(. ) TE mn k I C mn TM mn ki yk I z " D mn (4) E II (; y; z) = 4ß Z Z ρ jk y A 0 + k k z " A sin (k z (z d)) ep ( jk ) ep ( jk y y) dk dk y (5a) Ey II (; y; z) = 4ß Z Z ρ ky k z " A jk A 0 sin (k z (z d)) ep ( jk ) ep ( jk y y) dk dk y (5b) Ez II (; y; z) = 4ß Z Z k j" kz A cos kz (z d) ep ( jk ) ep ( jk y y) dk dk y (5c) H II (; y; z) = 4ß Z Z ρ jk y A k k z μ A 0 cos (k z (z d)) ep ( jk ) ep ( jk y y) dk dk y (5d) Hy II (; y; z) = 4ß Z Z ρ jk A k yk z μ A 0 cos (k z (z d)) ep ( jk ) ep ( jk y y) dk dk y (5e) Hz II (; y; z) = 4ß Z Z jμ k k z A0 sin kz (z d) ep ( jk ) ep ( jk y y) dk dk y (5f) d = :0mm Fig. Reflection coeicient versus the number of calculated mode (a) Reflection coeicient j j (b) Phase angle i A 0 ;A C mn ;D mn 3. 3. 0GHz, " r = 5:5 j0:3 X WRJ 0 a=.9mm, b=0.mm ( ) 6 [4] 0 [5] d=0 0mm 3 (a) d=3.5mm,6mm d=mm 6 [4] 57

'99/9 Vol. J8 C I No. 9 Fig. 3 3 Occurrence rate of each mode (Freq.:0GHz,Relative permittivity: " r = 5:5 j0:3) (b) TM TM 4 TM n 4. 3 (a) d (d=.0mm) (b) (d=.0mm) (c) (d=3.5mm) (d) (d=6.5mm) (e) d (d=8.0mm) 4 (TE 0 ) Fig. 4 Incident field distribution(te 0 ). E 0 ;H 0 4 E y ;H y d=.0mm,3.5mm,6.5mm,8.0mm 58

Fig. 5 5 E II y ;HII y (d=.0mm, z=0.5mm) Field distributions on the y-plane(d=.0mm, z=0.5mm) Fig. 6 6 E II y ;HII y (d=3.5mm, z=.5mm) Field distributions on the y-plane(d=3.5mm, z=.5mm) E 0 ;H 0 5 8 > = 0;y > = 0 d=.0mm,3.5mm ( 5,6(a)) E y H y ( (b)) d=3.5mm H y d=6.5mm,8.0mm E y H ; y d=6.5mm E y d=8.0mm E y H y E y H y (a) (d) y ( 4) 9 E, H y =0 yz y=0 z 0 9 d 9, 0, E z 59

'99/9 Vol. J8 C I No. 9 Fig. 7 7 E II (d=6.5mm) y ;HII y Field distributions on the y-plane(d=6.5mm) Fig. 8 8 E II y ;HII y (d=8.0mm, z=3.0mm) Field distributions on the y-plane(d=8.0mm, z=3.0mm) H y E y E y E z H E z y 5(a) E z E y y y E y 0 H y (5e) k ;k y = 0 yz y = 0 z 0 y TEM (.0mm) H 4 5 ( 0(a)) z (3.5mm) E z ( (b)) TM 530

Fig. 9 9 (d=.0mm, z=0.5mm) Field distributions(d=.0mm, z=0.5mm) (a)h II along the y-ais (b)e II z along the y-ais 0 (d=.0mm, z=.0mm) Fig. 0 Field distributions(d=.0mm, z=.0mm) (a)h II along the y-ais (b)eii along the y- z ais d E y, H y ( ) E z E y ( (a)(b)) E y H E z y y ( (b)(d)) = 0 yz H y 0 y TM H z E y ( (a)(c)) E (6a) y = 0 z 0 TE 5. 5. d=6.5mm E y ;H y d=.0mm E y H y ( 5) d c c = p " r n z d (6) n z z (6) y y d c 0GHz (n z =) d c =6.5mm 53

'99/9 Vol. J8 C I No. 9 Fig. (d=3.5mm, z=.5mm ) Field distributions(d=3.5mm, z=.5mm) (a)h II along the y-ais (b)e II z along the y-ais Fig. (d=6.5mm) Field distributions(d=6.5mm) (a)e II y along the -ais (z=3.0mm) (b)e II y II along the y-ais (z=3.0mm) (c)h along the -ais (z=.5mm) (d)h II along the y-ais (z=.5mm) 53

Fig. 3 3 (d=8.0mm, z=3.0mm) Field distributionsd=8.0mm, z=3.0mm) (a)e II y along the -ais (b)e II y II along the y-ais (c)h II along the -ais (d)h along the y-ais d c > = 6.5mm d c < = 6.5mm 7(a)(b) d c d d c E y H y ( 3) ; y k ;k y d=8mm k = k y = r ß k = 77 j4 (7) d 6[deg./mm] 3 ( y > = 0mm) ; y y =.5mm y y=5.mm E y 3 0.3 0.43 3 y =0 y TM (=.5mm) d y y 533

'99/9 Vol. J8 C I No. 9 E y H y > = 0mm y ß= [rad] TE TM [7] d=8mm H y 8(b) 3(d) y (y=0mm) (5) 3(d) y=0mm H (5d) C 0 0:7 + j0:6 D 0:08 j0:065 TE 0 TM 5. TM 3 TM n TM E z E y TM E y ;E z E z y E y d d c E z E z y=0 z TM 6. (TE 0 ) d c d d c =0 yz TEM y d d c y=0 z TE =0 yz y TM y d c y [],,, 959. [],," EMT-9-9,99. [3],,", pp.57 59,, 989. [4],,," EMT-98-70,998. [5],,,," C--58,998. [6], ",, 99. [7],, pp.85 97,, 977.. (3) (3) P C (m; n; k; l), P D (m; n; k; l), P Cy (m; n; k; l), P Dy (m; n; k; l) i mk nly ;imk nl P C (m; n; k; l) = Z Z ( k y " 4ß k + k y k z + k k z μ jk I ^Φ mny + " k z + k z μ jk k y k I y ^Φ mn ) ^Φ kly dk dk y tan (k z d) (A a) 534

P D (m; n; k; l) = Z Z 4ß k + k y jki yk I z " ^Φmny ρ k y " k z + " k z + k z μ jk k y k I k I z " ^Φmn ^Φ kly dk dk y tan (k z d) P Cy (m; n; k; l) = Z Z 4ß k + k y jk k y k I ^Φ mny + k " k z + k k z μ (A b) ρ " k z + k z μ + k yk z μ jk I y ^Φ mn ^Φ kl dk dk y tan (k z d) P Dy (m; n; k; l) = Z Z 4ß k + k y jk k y k I yk I z " ^Φmny + k " k z ρ " + k z k z μ + k yk z μ jk I k I z " ^Φmn ^Φ kl dk dk y tan (k z d) (A c) (A d) ^Φ mny ; ^Φ mn ^Φ mny ; ^Φ mn ^Φ mny = ψ sin k I + k a k I + k j m sin k I k a k I ( j) m+ k ψ sin k I y + k y b k I y + k y j n sin ky I k + y b ky I ( j) n k y (A a) ^Φ mn = ψ sin k I + k a k I + k j m + sin k I k a k I ( j) m k ψ sin k I y + k y b k I y + k y j n sin ky I k y b ky I ( j) n+ (A b) k y 0 ab (m = k n = l > 0) B inly mk 4 = ab @ (m = k n = l = 0) 0 B inl mk = @ 0 (m j= k n j= l) ab 4 (m = k n = l > 0) 0 (m j= k n j= l C n = 0 l = 0) A (A 3a) C A (A 3b). I (z < = 0) y Ey I (; y; z) = M (; y) ep jk ψ zz I + X m;n k I C mn + ki y ki z " D mn Φ mny ep jk I zz (A 4) Φ mny Ey I n mß Φ mny = sin a 3. (5) A 0 A + a o ρ nß cos y + b b (A 5) (5) A 0 ;A C mn ;D mn A 0 = j(k + k y ) sin (k zd) " + k k I ^Φ 0y + X m;n( k k I ^Φ mny ψ k y k I y ^Φ mn C mn k k I yk I z " ^Φmny k y k I ki z " ^Φmn D mn )# (A 6a) 535

'99/9 Vol. J8 C I No. 9 A = " k z (k + k y ) sin (k zd) " k y k I ^Φ 0y + X m;n( k y k I ^Φ mny + +k k I y ^Φ mn C mn ψ k y k I yk I z " ^Φmny + k k I k I z " ^Φmn D mn )# (A 6b) 0 5 0 4 IEEE 6 IEEE 40 43 44 IEEE 536