Similar documents
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

TOP URL 1

TOP URL 1

振動と波動

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.



meiji_resume_1.PDF

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

DVIOUT-fujin

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1


30

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

量子力学 問題

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

_TZ_4797-haus-local

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


°ÌÁê¿ô³ØII

29

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


Part () () Γ Part ,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

I II

0406_total.pdf

newmain.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

koji07-01.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

chap03.dvi

2012 A, N, Z, Q, R, C

IA

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

Chap11.dvi


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

dynamics-solution2.dvi


I ( ) 2019

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Gmech08.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

入試の軌跡


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

( ) ) AGD 2) 7) 1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

1 (Contents) (4) Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

( ) ( )

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

B ver B

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

A

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

kou05.dvi

Transcription:

30 3..........................................................................................3.................................... 4.4..................................... 6 A Q, P s- 7 B α- 9 Q P () ρ W (q, p) def dkdχ (π) e i(kq+χp) Tr[e i(kq+χp ) ρ] Tr[Π(q, p)ρ] (.) Π(q, p) def dkdχ (π) e i(kq+χp) e i(kq+χp ). (.) f(q, p) Q[f(q, p)] Q[f(q, p)] def dqdp f(q, p)π(q, p) (.3) Π(q, p) f Q[f(q, p)] Q[f(q, p)] ρ Q[f(q, p)] Tr(Q[f(q, p)]ρ) dqdp f(q, p)w (q, p) (.4)

Q[{f, g}] [Q[f], Q[g]] iħ + O(ħ) (.5) [4] {f, g} [F, G] Q[q n p m ] l0 m m C l P l Q n P m l n k0 n n C k Q k P m Q n k. (.6).4 Q[qp] (QP + P Q). (.7) [, 3]. A, B W (a, b) def dsdt (π) e i(sa+tb) Tr[e i(sa+tb) ρ] Tr[Π(a, b)ρ], (.) Π(a, b) def dsdt (π) e i(sa+tb) e i(sa+tb) (.) f(a, b) Q[f(q, p)] Q[f(a, b)] def dadb f(a, b)π(a, b) (.3) Q[f(a, b)] Tr(Q[f(a, b)]ρ) dadb f(a, b)w (q, p) (.4) n [, 4].. #(s, t) A, B A, B c a, b e i(sa+tb) #(s, 0) e isa, (.5) #(0, t) e itb (.6)

#(s, t) e i(sa+tb) e isa e itb e itb e isa Π n k eiαksa eiβktb ( n k α k, n k β k ) (.7) #(s, t) α e isa e itb + + α e itb e isa (.8) #(s, t) dk G(k)# k (s, t) ( ) dk G(k), (.9) # k (s, t) def e i s ( k)a e itb e i s (+k)a (.0) #(s, t) e isa e itb Kirkwood(933)-Dirac(945) [5, 6]. #(s, t) e isa e itb 949 Moyal [7]. (A, B) (Q, P ) Weyl(97) Wigner(93) [8, 9]. W # (a, b) def dsdt (π) e i(sa+tb) Tr[#(s, t)ρ] Tr[Π # (a, b)ρ], (.) Π # (a, b) def dsdt (π) e i(sa+tb) #(s, t) (.) f(a, b) Q # [f(q, p)] Q # [f(a, b)] def dadb f(a, b)π # (a, b) (.3) Q # [f(a, b)] Tr(Q # [f(a, b)]ρ) dadb f(a, b)w # (q, p) (.4) W # (a, b) a( b) b( a) dsdt db Π # (a, b) (π) db e i(sa+tb) #(s, t) dsdt π e isa δ(t)#(s, t) ds π e isa #(s, 0) ds π eis(a a) δ(a a) (.5) 3

db W # (a, b) Tr[δ(A a)ρ] W (a) (.6) a da W # (a, b) Tr[δ(B b)ρ] W (b). (.7) Q # [f(a)] f(a), (.8) Q # [g(b)] g(b) (.9) Q # [a n b m ] Q # [a n b m ] dadb a n b m Π # (a, b) dadb dadb dsdt (π) an b m e i(sa+tb) #(s, t) dsdt (π) dsdt (π) n+m #(s, t) (is) n (it) m n+m e i(sa+tb) ( is) n #(s, t) ( it) m dadb e i(sa+tb) n+m #(s, t) (is) n (it) m s0,t0 (.0).3 Weyl and Wigner[8, 9] (a n b m ) WW l0 m m C l B l A n B m l (.) Kirkwood and Dirac[5, 6] (a n b m ) KD A n B m, B m A n (.) Margenau and Hill[0] (a n b m ) MH (An B m + B m A n ) (.3) Born and Jordan[] (a n b m ) BJ m + 4 B l A n B m l. (.4) l0

Q[X] (X) (.9) #(s, t) (.0) (a n b m ) # G m,l def l0 l0 m m C l dk G(k)( + k) l ( k) m l B l A n B m l m m C l G m,l B l A n B m l, (.5) dk G(k)( + k) l ( k) m l (.6) Weyl and Wigner G(k) δ(k) G m,l, (.7) (a n b m ) # m m C l B l A n B m l (.8) Margenau and Hill G(k) [δ(k ) + δ(k )] l0 Born and Jordan G m,l m (δ l0 + δ lm ), (.9) (a n b m ) # (An B m + B m A n ) (.30) G(k) { x 0 x > (.3) ) G m,l def dk ( + k)l ( k) m l m dk x l ( x) m l 0 m B(l +, m l + ) m Γ(l + )Γ(m l + ) Γ(m + ) m l!(m l)! (m + )m! m, m + mc l (.3) (a n b m ) # B l A n B m l. m + (.33) l0 ) G(k) sin x/x 5

.4 (A, B) (Q, P ) g(x) g(0) (.34) #(s, t) g( ħst )# 0(s, t) (.35) # 0 (s, t) e i(sq+tp ) (.36) g(x), cos x, sin x x Weyl and Wigner, Margenau and Hill, Born and Jordan g(x) g(x) dk G(k)e ikx. (.37) (.34) dk G(k). (.38) #(s, t) (.9) #(s, t) ħst ik dk G(k)e #0 (s, t) dk G(k)# k (s, t), # k (s, t) def ħst ik e #0 (s, t) (.39) # k (s, t) e i k sq # 0 (s, t)e i k sq e i k tp # 0 (s, t)e i k tp (.40) # 0 (s, t) e isq/ e itp e isq/ e itp/ e isq e itp/ (.4) # k (s, t) Q, P (.) (.6) # k (s, t) e i s ( k)q e itp e i s (+k)q (.4) e i t (+k)p e isq e i t ( k)p (.43) 6

A Q, P s- [4] a, a ) [a, a ], [a, a] 0 [a, a ] (A.) D(α) def exp(αa α a), (A.) D(α, s) def D(α) exp( s α ), (A.3) s (z) def d α π D(α, s) exp( αz + α z) (A.4) a, a ρ ρ 3) α D(α) 0 (a 0 0, 0 0 ) (A.6) ρ s (z) def Tr[ρ s (z)] (A.7) d α +α z π e αz e s α Tr[e αa α a ρ] (A.8) ρ d z π ρ s(z) s (z) (A.9) a, a A d z A π A s(z) s (z), (A.0) A s (z) def Tr[A s (z)] (A.) Tr[AB] d z d π A z s(z)b s (z) π A s(z)b s (z) (A.) d α A π Tr[AD (α)]d(α) (A.3) ) α x + iy re iθ d α dx dy 0 dr π 0 dθ r (A.5) 3) (A, B) (Q, P ) 7

s,, 0 P, Q, Wigner (A.8) W (z) ρ 0 (z) d α π e αz +α z Tr[e αa α a ρ] (A.4) (z) z z (A.5) (A.9) ρ d z π P (z) z z, P (z) ρ (z) (A.6) (A.7) Q(z) ρ (z) z ρ z (A.7) s- {(a ) n a m } s def ( ) m n+m α n α m D(α, s) α0 (A.8) d z π z n z m s (z) {(a ) n a m } s, (A.9) (A.0) ({(a ) n a m } s ) s (z) z n z m (A.) (A.) {(a ) n a m } s d z π ρ s(z)z n z m (A.) D(α, s) D(α)e s α e s α e αa e α a e s e α a e αa (A.3) n+m {(a ) n a m } ( ) m α n α m e α a e αa α0 a m (a ) n, (A.4) n+m {(a ) n a m } ( ) m α n α m eαa e α a α0 (a ) n a m (A.5) 8

(a ) n a m a m (a ) n d z π P (z)z n z m, (A.6) d z π Q(z)z n z m (A.7) n+m {(a ) n a m } 0 ( ) m α a α n α m eαa α0 n+m ( )m k! α n α m (αa α a) k α0 k0 n+m ( )m (n + m)! α n α m (αa α a) n+m α0 n+m (n + m)! α n α m (αa + α a) n+m α0 (A.8) {a a} 0 a a + aa {(a ) n a m } 0 a, a Weyl (A.9) B α- A α (x, p) def dq e ipq x + α q A x + α q (B.) α 0, A ρ Wigner [4]. A α (x) def dp π A α(x, p) dp dq e ipq x + α q A x + α q π x A x (B.) A α (p) def dp (π) dx (π) A α(x, p) dx dq e ipq x + α q A x + α q (B.3) x x + α q, x x + α q (B.4) x x + x + α q, q x x (B.5) 9

( < α ) A α (p) (π) dx dx dx e ip(x x ) x A x dx p x x A x x p p A p (B.6) A α dxdp π dx dx α (x, p) def dq A α dq x α def dq e iqp x + + α dy e ip(q+y) x + + α q x α q (B.7) dxdp π A α(x, p) α (x, p) (B.8) q x α dx x x A x x y x α q A x + + α q A x + + α q x + + α q q x α y A A (B.9) dxdp π A α(x, p) α (x, p) (B.0) A α (x, p) Tr[A α (x, p)] Tr[A α(x, p)] (B.) A E a,b α (x, p) E a,b α (x, p) dxdp π Tr[A α(x, p)] α (x, p). (B.) A E a,b def e i(ax+bp ) (B.3) dq e ipq x + α dq e ipq e iab/ x + α dq e ipq e iab/ +α ia(x e q e i(ax+bp ) x + α q (B.4) q e iax e ibp x + α q q x + α q b q) x + α dq e ipq e iab/ +α ia(x e q) δ(q b) e ipb e iab/ +α ia(x e b) e i(ax+bp αab/) (B.5) 0

α, 0, (e iax e ibp ) (x, p) (e i(ax+bp ) ) 0 (x, p) (e ibp e iax ) (x, p) e iax+ibp (B.6) α- {X n P m } α def dxdp π xn p m α (x, p) (B.7) dxdp π eiax e ibp (x, p) e iax e ibp, (B.8) dxdp π eiax e ibp 0 (x, p) e i(ax+bp ), (B.9) dxdp π eiax e ibp (x, p) e ibp e iax (B.0) {X n P m } X n P m, {X n P m } P m X n (B.) {X n P m } 0 n+m (ax + bp ) n+m a,b0 (n + m)! a n b m (B.) [], 5, pan. [],, Quasi-probabilities in conditioned quantum measurement and a geometric/statistical interpretation of Aharonov s weak value, PTEP 07.5 (07): 05A0 [3],, On Quantisations, Quasi-probabilities and the Weak Value, arxiv:703.06068 [4] c [5] J. G. Kirkwood, Quantum Statistics of Almost Classical Assemblies, Phys. Rev. 44, 3 (933). [6] P. A. M. Dirac, On the Analogy Between Classical and Quantum Mechanics, Rev. Mod. Phys. 7, 95 (945). [7] J. E. Moyal, Math. Proc. Cambridge Philos. Soc. 45, 99 (949). [8] H. Weyl, Quantenmechanik und Gruppentheorie, Zeitschrift f ur Physik, 46(), (97). [9] E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40, 749 (93). [0] H. Margenau and N. R. Hill, Correlations between measurements in quantum theory, Prog. Theoret. Phys. 6, 7 (96). [] M. Born and P. Jordan, Zur Quantenmechanik, Z. Phys. 34, 858 (95).