BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro : $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $or

Similar documents
2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

日本内科学会雑誌第98巻第3号

数理解析研究所講究録 第1977巻

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

コホモロジー的AGT対応とK群類似

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

超幾何的黒写像

第85 回日本感染症学会総会学術集会後抄録(III)

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

日本内科学会雑誌第101巻第12号

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

$)\triangleleft\hat{g}$ $\mathcal{t}\mathcal{h}$ 106 ( ) - Einstein ( ) ( ) $R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}r=\kappa T_{\mu\nu}$ bottom-up feedback

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

A B C D E F G H J K L M 1A : 45 1A : 00 1A : 15 1A : 30 1A : 45 1A : 00 1B1030 1B1045 1C1030

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

数理解析研究所講究録 第1908巻

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

可約概均質ベクトル空間の$b$-関数と一般Verma加群

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

一般演題(ポスター)

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

22 GG set GG 2 ( ) $N=\{12 \cdots\}$ ( ) ( ) Peano $1arrow^{o}Narrow^{s}N$ $1arrow Xarrow X$ $N$ $\mathrm{s}\mathrm{e}\mathrm{t}^{g}$ $N$ Dedekind $N$

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

日本内科学会雑誌第102巻第10号

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL


90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

, 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

数論的量子カオスと量子エルゴード性

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

パーキンソン病治療ガイドライン2002

yakuri06023‡Ì…R…s†[

本文27/A(CD-ROM

tnbp59-20_Web:P1/ky108679509610002943

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

2301/1     目次・広告



jigp60-★WEB用★/ky494773452500058730

プログラム

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S


Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

Wolfram Alpha と数学教育 (数式処理と教育)

チュートリアル:ノンパラメトリックベイズ

2 TOMOYUKI ARAKAWA 2. Beilinson-Drinfeld W W. Weyl. g C Lie, G, W Weyl, h Cartan. S(h) W S(h) W. S(h) 3 Heisenberg( ) (free boson). Fateev-Lukyanov [F

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

$\bullet$ $\wedge$ $\Lambda$ Combinatorial aspects of box-ball systems - (Kaori Fukuda) Graduate School of Science and Technology

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

tnbp59-17_Web:プO1/ky079888509610003201

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n


(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

Kaluza-Klein(KK) SO(11) KK 1 2 1

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

D 24 D D D

untitled

Transcription:

1218 2001 15-25 15 BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $oro$ $\mathbb{c}$-vector space Vir $=\oplus \mathbb{c}l_{n}n\in \mathbb{z}\oplus \mathbb{c}c$ Lie $[L_{m} L_{n}]=(m-n)L_{m+n}+ \frac{1}{12}(m^{3}-m)\delta_{m+n0}c$ [Vir $c$ ] $=\{0\}$ Lie Vir $=\mathrm{v}\mathrm{i}\mathrm{r}^{+}\oplus \mathrm{v}\mathrm{i}\mathrm{r}^{0}\oplus \mathrm{v}\mathrm{i}\mathrm{r}^{-}$ $\mathrm{v}\mathrm{i}\mathrm{r}^{\pm}=\oplus \mathbb{c}l_{n}\pm n\in \mathbb{z}_{>0}$ $\mathrm{v}\mathrm{i}\mathrm{r}=\mathbb{c}l_{0}\oplus \mathbb{c}c$ Virasoro $\backslash$ universal $\geq_{=\mathrm{v}\mathrm{i}\mathrm{r}^{0}}\oplus $(z h)\in \mathbb{c}^{2}(\cong(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*})$ 12 Vir Highest Weight Module \mathrm{v}\mathrm{i}\mathrm{r}^{+}$ -module $c1_{zh}=z1_{zh}$ $L_{0}1_{zh}=h1_{zh}$ Vir$+1_{zh}=0$ highest we\psi ht (z ) V\mbox{\boldmath $\tau$}ma I $h$ $M(z h)$ I $\mathbb{c}_{zh}=\mathbb{c}1_{zh}$ $M(z h)$ $=\mathrm{i}\mathrm{n}\mathrm{d}_{u(\mathrm{v}\mathrm{i}\mathrm{r}^{\geq})}^{u(\mathrm{v}\mathrm{i}\mathrm{r})}\mathbb{c}_{zh}=u(\mathrm{v}\mathrm{i}\mathrm{r})\otimes U(\mathrm{V}\mathrm{i}\mathrm{r}\geq)\mathbb{C}_{zh}$

16 $(z 11 h)\in \mathbb{c}^{2}(\cong(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*})$ 1 $M(z h)$ $Vir^{0}$ -diagonalizable $ie$ $M(z h)=\oplus_{\mathrm{z}_{\geq 0}}M(z h)_{h+n}n\in$ $M(z h)_{h+n}=\{u L_{0}u=(h+n)u\}$ 2 $n$ $\in \mathbb{z}0$ $\dim M(z h)_{h+n}=p(n)$ (n ) $<\infty$ 3 $M(z h)$ 1 $ie$ $J(z h)$ $L(z h)=m(z h)/j(z h)$ highestweight $(z h)$ highest weight O [BPZ] 0 BPZ ( Minimale ) BPZ Data $p$ $q\in \mathbb{z}_{>1}$ $z=1-6 \frac{(p-q)^{2}}{pq}$ $\alpha$ \beta \in Z $h_{\alpha\beta}= \frac{(\alpha p-\beta q)^{2}-(p-q)^{2}}{4pq}$ $t$ s\in Z0 $r<q$ $s<p$ i \in Z $\mathrm{m}\mathrm{o}\mathrm{d} 2$ $h_{(i-1)q+r-s}$ $i\equiv 1$ $h_{i}=\{$ $h_{iq+rs}$ $i\equiv 0$ $\mathrm{m}\mathrm{o}\mathrm{d} 2$ 2 ( ) BPZ Verma (Jantzen Filtration) [Ja] Verma $M(z h)$ $M(z h)$? $M(z$ h

$\sigma$ 17 $M$ ( $z$ $(\cdot \cdot)_{zh}$ h) $U(\mathrm{V}\mathrm{i}\mathrm{r})arrow U$(Vir) $L_{n}\mapsto L_{-n}(n\in \mathbb{z})$ $c\mapsto c$ ant nvolution $U$(Vir) $=U(\mathrm{V}\mathrm{i}\mathrm{r}^{0})\oplus\{\mathrm{V}\mathrm{i}\mathrm{r} -U(\mathrm{V}\mathrm{i}\mathrm{r})+U(\mathrm{V}\mathrm{i}\mathrm{r})\mathrm{V}\mathrm{i}\mathrm{r}^{+}\}$ 1 $\piu(\mathrm{v}\mathrm{i}\mathrm{r})arrow U(\mathrm{V}\mathrm{i}\mathrm{r}^{0})\cong \mathbb{c}[(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*}]$ 21 ( h)\in (Vir0)*\cong C2 $M$ ( $z$ $\langle\cdot $z$ h) (contravariant form) \cdot\rangle_{zh}$ $\langle\cdot \cdot\rangle_{zh}$ $M(z h)\cross M(z h)arrow U$ (Vir ) $\mathrm{x}u$(vir $-$ $arrow U(\mathrm{V}\mathrm{i}\mathrm{r}^{0})arrow \mathbb{c}$ ) $(xv_{zh} yv_{zh})\mapsto$ $(x y)$ $\mapsto\pi(\sigma(x)y)\mapsto\pi(\sigma(x)y)(z h)$ $x$ $y\in U(\mathrm{V}\mathrm{i}\mathrm{r}^{-})v_{zh}=1\otimes 1_{zh}$ $(z 21 h)\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*}$ $\langle u w\rangle_{zh}=\langle w u\rangle_{zh}$ 1 (\lambda J ) $(u w\in M(z h))$ $\langle xu w\rangle_{zh}=\langle u \sigma(x)w\rangle_{zh}$ 2 ( ) $(x\in U(\mathrm{V}\mathrm{i}\mathrm{r}) u w\in M(z h))$ 3 Rad $\langle\cdot \cdot\rangle_{zh}=\{u\in M(z h) \langle u w\rangle_{zh}=0(\forall w\in M(z h))\}$ $M$ ( h) $z$ 21 2 x $=L_{0}$ 22 m\in Z0 m\neq n $n$ $\langle\cdot \cdot\rangle_{zh} _{M(zh)_{h+m}\mathrm{x}M(zh)h+n}=0$ $\mathrm{t}_{\vee}$ $n\in \mathbb{z}_{>0}$ $\langle\cdot \cdot\rangle_{zh;n}=\langle\cdot \cdot\rangle_{zh} _{\Lambda l(zh)_{h+n}\cross \mathrm{a}^{\gamma}i(zh)h+n}$ 21 22 23 $M(z h)$ $\Leftrightarrow$ Rad $\langle\cdot$ $\cdot)_{zh;n}=\mathrm{r}\mathrm{a}\mathrm{d}\langle\cdot \cdot\rangle_{zh}\cap M(z h)_{h+n}=\{0\}$ $\forall n\in \mathbb{z}_{>0}$ 11 2 $n\in \mathbb{z}_{>0}$ $\{u_{i}\}_{1\leq i\leq p(n)}$ $M(z h)_{h+n}$ $\det\langle\cdot \cdot\rangle_{zh;n}=\det((\langle u_{i} u_{j}\rangle_{zh})_{1\leq ij\leq p(n)})$ ( eg [TK] )

$\langle\cdot \cdot\rangle_{zh}^{t}$ $\langle$ $\cdot$ )zh $\backslash$ 18 $\mathrm{k}\mathrm{a}\mathrm{c}$ 24( determinant) $\ovalbox{\tt\small REJECT}$ $n\mathrm{c}\mathbb{z}0$ $( \det\langle\cdot \cdot\rangle_{zh;n})^{2}\propto\prod_{\alpha\beta\in \mathbb{z}_{>0}}\phi_{\alpha\beta}(z h)^{p(n-\alpha\beta)}$ $\Phi_{\alpha\beta}(z h)$ $= \{h+\frac{1}{24}(\alpha^{2}-1)(z-13)+\frac{1}{2}(\alpha\beta-1)\}$ $\cross\{h+\frac{1}{24}(\beta^{2}-1)(z-13)+\frac{1}{2}(\alpha\beta-1)\}+\frac{1}{16}(\alpha^{2}-\beta^{2})^{2}$ BPZ $M(z h_{i})(i\in \mathbb{z})$? ( ) $M(z h_{i})$ $\mathrm{r}\mathrm{a}\mathrm{d}\langle\cdot$ $\cdot)_{zh}$(7) Verma Rad $M(z h)((z h)\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*})$ $\langle$ $\cdot$ $\text{ }$ $\text{ }$ $\cdot \mathrm{x}_{h}$ $(z h)\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*}$ generic Jantzen Filtration $M(z h)$ [Ja] 5 $(z h)\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})$ $\mathbb{c}[t]$ T 1 & $(z h )\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*}$ $\alpha$ $\beta\in \mathbb{z}_{>0}$ generic $\Phi_{\alpha\beta}(z+Tz h+th )\in \mathbb{c}[t]\backslash T^{2}\mathbb{C}[T]$ 1 $M(z h)\cross M(z h)arrow U(\mathrm{V}\mathrm{i}\mathrm{r}^{-})\mathrm{x}U$(Vir $-$ ) $arrow \mathbb{c}[t]$ $(xv_{zh} yv_{zh})\mapsto$ $(x y)$ $\mapsto\pi(\sigma(x)y)\{(z h)+t(z h )\}$ $k\in \mathbb{z}_{>0}$ $M(z h)(k)=\{u \mathrm{o}\mathrm{r}\mathrm{d}_{t}\langle u w\rangle_{zh}^{t}\geq k (\forall w\in M(z h))\}$ $P(T)\in \mathbb{c}[t]\backslash \{0\}$ $k=\mathrm{o}\mathrm{r}\mathrm{d}_{t}p(t)$ $T^{k} P(T)$ $T^{k+1} \int P(T)$ $k\in \mathbb{z}$ (P(T)=0 $n\in \mathbb{z}_{>0}$ p(n)$ {ui}l $\leq\dot{\iota}\leq $M(z h)_{h+n}$ ) $\mathrm{o}\mathrm{r}\mathrm{d}_{t}p(t)=\infty$ $\det\langle\cdot \cdot\rangle_{zh;n}^{t}=\det((\langle u_{i} u_{j}\rangle_{zh}^{t})_{1\leq i\leq p(n)})$ $k\in \mathbb{z}_{>0}$ 25 ([Ja]) 1 $M(z h)(k)$ $M(z h)$ Vir- $M(z h)(1)=\mathrm{r}\mathrm{a}\mathrm{d}\langle\cdot \cdot\rangle_{zh}\mathrm{i}\mathrm{h}m(z h)$

19 $k\in \mathbb{z}_{>0}$ 2 $M(z h)(k)/m$ ( h)(k+y $z$ ( $T^{-k}$ $\cdot\rangle_{zh}^{t} _{T=0}$ ( $\cdot$ ) $n\in \mathbb{z}_{>0}$ 3 $\mathrm{o}\mathrm{r}\mathrm{d}_{t}\det(\cdot$ $\cdot\rangle_{zh;n}^{t}=\sum_{k=1}^{\infty}\dim\{m(z h)(k)\}_{h+n}$ $M(z h)(k)_{h+n}=\{u\in M(z h)(k) L_{0}u=(h+n)u\}$ BPZ 25 3 26i\in Z n $\in \mathbb{z}_{>0}$ $ \sum_{k=1}^{\infty}\dim M(z h_{i})(k)_{h_{i}+n}=\sum_{k=1}^{\infty}\{\dim\lambda I(z h_{ i +2k-1})_{h_{i}+n}+\dim M(z h_{- i -2k+1})_{h_{i}+n}\}$ 2 1 $\{h_{i}+\alpha\beta (\alpha \beta)\in(\mathbb{z}_{>0})^{2}\mathrm{s}\mathrm{t} \Phi_{\alpha\beta}(z h_{i})=0\}=\{h_{ i +2k-1} h_{- i -2k+1} k\in \mathbb{z}_{>0}\}$ 2 $(z h_{i})$ $1\backslash$ $\llcorner$ $(0 1)\in(Vir^{0})^{*}$ generic $\mathrm{o}\mathrm{r}\mathrm{d}_{t}\phi_{\alpha\beta}(z h_{i}+t)\leq 1$ 3 BPZ Verma $\mathrm{m}(z h_{i})(i\in \mathbb{z})$ Jantzen Filtration Verma Diagram $(Z_{\backslash }h)\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*}$ 31 $n$ $\in \mathbb{z}0$ $\dim\{\lambdai$ ( h)h+ vir+ $z$ $\leq 1$ $\{\Lambda I(\approx h)_{h+n}\}^{\mathrm{v}\mathrm{i}\mathrm{r}^{+}}=\{u\in\lambda I(z h)_{h+n} \mathrm{v}\mathrm{i}\mathrm{r}^{+}u=\{0\}\}$ I(\sim\sim$ ( $\{\Lambda\prime $$ $h)_{h+n}\}^{\mathrm{v}i_{\mathit{1}}^{+}}\backslash \{0\}$ singular vector ) 1 n\in Z 0} Pn $n\}$ $n$ $ $ $\mathrm{i}=(1^{r_{1}}2^{r_{2}}\cdots n^{r_{1}} )\in P_{n}$ $\{e_{\mathrm{i}}\tau_{zh} \mathrm{i}\in P_{n}\}(\mathrm{C}_{\approxh} =1\otimes 1_{\approxh})$ $= \{(1^{r_{1}}2^{r_{2}}\cdots n^{r_{n}}) r_{i}\in \mathbb{z}_{\geq 0}\sum_{i=1}^{n}ir_{i}=$ $e_{\mathrm{i}}=l_{-n}^{r_{n}}\cdots L_{-2}^{r_{2}}L_{-1}^{r_{1}}$ $AI(_{\sim}^{\sim} h)_{h+n}$

$c_{\mathrm{j}}^{w }= \alpha_{\mathrm{j}}^{w}c_{\mathrm{j}}^{w}+\sum_{\mathrm{i}>\mathrm{j}}q_{\mathrm{j}}^{w;\mathrm{i}}c_{\mathrm{i}}^{w}\mathrm{i}\in \mathcal{p}_{\mathfrak{n}}$ $\mathrm{j}\ovalbox{\tt\small REJECT}$ 20 $n\mathrm{c}$ 2 Z0 Pn $>$ $\ovalbox{\tt\small REJECT} \mathbb{i}\ovalbox{\tt\small REJECT}(1^{7)}2^{r_{2}}\cdots n^{r_{n}})$ $(1^{s_{1}}2^{82}\cdots n^{s}\cdot)c$ $\ovalbox{\tt\small REJECT}\backslash $ $\mathrm{i}>\mathrm{j}\leftrightarrow\exists m\in \mathbb{z}_{>0}$ $r_{k}=s_{k}$ $k<m$ st $\leq n$ $\{$ $r_{k}>s_{k}$ $k=m$ 3 $n\in \mathbb{z}_{>0}$ $w\in\{m(z h)_{h+n}\}^{\mathrm{v}i\mathrm{r}^{+}}\backslash \{0\}$ $w= \sum_{\mathrm{i}\in \mathcal{p}_{n}}c_{\mathrm{i}}^{w}e_{\mathrm{i}}v_{zh}$ $\mathrm{j}=(1^{s_{1}}j^{s_{j}}\cdots n^{s_{\hslash}})\in P_{n}(\exists j\in \mathbb{z}_{>1}\mathrm{s}\mathrm{t} $\mathrm{j} =(1^{s_{1}+1}j^{s_{j}-1}\cdots n^{s_{n}})\in P_{n-j+1}$ s_{j}>0)$ $c_{\mathrm{j}}^{w}\neq 0$ ( $w =L_{j-1}w= \sum_{\mathrm{i}\in P_{\mathfrak{n}-j+1}}$ ci ei vzh $\alpha_{\mathrm{j}}^{w}\in \mathbb{c}^{1}$ QJwjI\in C $\{c_{\mathrm{j}}^{w}\}$ 4 3 triangularity Kac determinant singular vector 32( $z$ h)\in (Vir0) $\Phi_{\alpha\beta}(z h)=0$ $\alpha$ $\beta\in \mathbb{z}_{>0}$ $\dim\{m(z h)_{h+\alpha\beta}\}^{\mathrm{v}\mathrm{i}\mathrm{r}^{+}}=1$ $Z_{\alpha\beta}$ $=\{(z h)\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*} \Phi_{\alpha\beta}(z h)=0\}$ $=\{(z(t) h_{\alpha\beta}(t)) t\in \mathbb{c}^{*}\}$ $z(t)=1-6 \frac{(t-1)^{2}}{t}$ $h_{\alpha\beta}(t)= \frac{(\alpha t-\beta)^{2}-(t-1)^{2}}{4t}$ t\in C\Q $\Phi_{\gamma\delta}(z(t) $(\gamma \delta)\in(\mathbb{z}_{>0})^{2}$ h_{\alpha\beta}(t))=0$ $(\mathbb{z}_{>0})^{2}$ $(\alpha \beta)\in$ $\det\langle\cdot \cdot\rangle_{z(t)h_{\alpha\beta}(t);n}\neq 0$ $\forall n<\alpha\beta$

21 21 $\exists w(t)=\sum_{\mathrm{i}\in P_{\alpha\beta}}c_{\mathrm{I}}^{w(t)}(t)e_{\mathrm{N}}v_{zh}\in\{M(z(t) h_{\alpha\beta}(t))_{h_{\alpha\beta}(t)+\alpha\beta}\}^{\mathrm{v}\mathrm{i}\mathrm{r}^{+}}\backslash \{0\}$ t $t$ $(z h)$ $t=t_{0}\in \mathbb{c}^{*}$ $w(t_{0})$ $\{c_{\mathrm{i}}^{w}(t)\}_{\mathrm{n}\in P_{\alpha\beta}}$ $(z(t) h_{\alpha\beta}(t))=$ 31 BPZ Verma Diagram $i$ $\in \mathbb{z}$ $[h_{i}]=m(z h_{i})$ Verma $M(z$ h Verma $M(z h_{j})(i j\in \mathbb{z})$ $[h_{i}]rightarrow[h_{j}]$ 26 31 32 1 Diagram 4 BPZ Verma Diagram ( 1) Verma $M$ ( $z$ h Jantzen Ffltration L( h $z$ Bernstein-Gel fand-gel fand Resolution $L(z h_{0})$ \mbox{\boldmath $\theta$} Dedekind \eta 1 Image Pre-Image $i\in \mathbb{z}$ k\in Z $>0$ Verma $N(z h_{i})(k)$ $\cdot$ $N(z h_{i})(k)=m$ ( $z$ h +k)+m $(z h_{- i -k})\subset M(z h_{i})$ $M(z$ h

22 41 i\in Z k\in Z $>0$ $M(z h_{i})(k)=n(z h_{i})(k)$ $M(z h_{i})(k)\supset N(z h_{i})(k)$ 25 Diagram( 1) $M(z h_{i})(k)=n(z h_{i})(k)$ $0\leq m<n$ $n\in \mathbb{z}_{>0}$ $m\in \mathbb{z}$ $i$ $\in \mathbb{z}$ $k\in \mathbb{z}_{>0}$ $M(z h_{i})(k)_{h+m}=n(z h_{i})_{h+m}$ $\backslash \cdot$ ( trivialo) $M(z h_{i})(k)_{h_{i}+n}=n(z h_{i})_{h+n}$ Complex $L_{0^{-}}\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}=h_{i}+n$ $arrow M(zd_{j+1} h\text{ }+k+j)$ $\oplus M(z h_{- i -k-j})arrow d_{j}$ $\mathrm{a}\mathrm{c}\mathrm{y}\mathrm{c}!\mathrm{i}\mathrm{c}$ $\ldotsarrow M(zd_{2} h\text{ }+k+1)$ $\oplus M$ ( $z$ h- -k-l) $arrow M(zd_{1} h\text{ }+k)\oplus M$ ( $z$ $h_{-}$ $-k$ ) $arrow N(z h_{i})(k)d_{0}arrow 0$ $d_{0}(x y)=x+y$ $d_{j}(x y)=(x+y -x-y)$ $(j>0)$ Complex ie $\mathrm{k}\mathrm{e}\mathrm{r}d_{j}\supset{\rm Im} d_{j+1}(j\in \mathbb{z}_{\geq 0})$ $\mathrm{k}\mathrm{e}\mathrm{r}d_{j}\subset{\rm Im} d_{j+1}$ $d_{0}$ $j\in \mathbb{z}_{>0}$ $\mathrm{k}\mathrm{e}\mathrm{r}dj=\{ (x -x) x\in M(z h\text{ }+k+j)\cap M(z h_{- -k-j})\}$ { ${\rm Im} d_{j+1}=$ $(x$ $-x) x\in M(z$ $h\text{ }+k+j+1)+m(z$ h- -k-j-l)} $M(z h \mathrm{i}+k+j)(1)$ $M(z h i +k+j)$ (cf 25 1) $M(Z h\text{ }+k+j)\cap M(Z h- \text{ }-k-j)\subset M$ (z\sim h +k+j)(1) hi+n=hlil+k+j+(hi-hlil+k+j+n) $hi-h i +k+j+n\leq n$ $(M(Z h$ $+k+j)(1))_{h+n=}(n(z\sim h$ $+k+j)(1))_{h+n}$ $N(z h \mathrm{i} -1k+\mathrm{j})(1)$ $(M(z h_{ i +k+j})\cap M(z h_{- i -k-j}))_{h+n}\subset(m(z h_{ i +k+j})(1))_{h+n}=(n(z h_{ i +k+j})(1))_{h_{i}+n}$ $=(M(z h_{ i +k+j+1})+m(z h_{- i -k-j-1}))_{h_{i}+n}$ $\mathrm{k}\mathrm{e}\mathrm{r}d_{j}\subset{\rm Im} d_{j+}$ L0-weight hi+n $=$ Euler-Poincare Principle dirn $N(z h_{i})(k)_{h+n}= \sum_{j=1}^{\infty}(-1)^{j-1}$ {dirn $M(z$ $h_{ i +k+j-1})_{h+n}+\dim M(z$ $h_{- i -k-j+1})_{h_{i}+n}$ }

$\mathrm{o}0$ $k\ovalbox{\tt\small REJECT} 1$ $\mathrm{o}\ovalbox{\tt\small REJECT}$ $k\ovalbox{\tt\small REJECT}[]$ 23 $\sum\dim N(z h_{i})(k)_{h_{i}+n}\ovalbox{\tt\small REJECT}\sum${ $\dim M(zh\text{ }+\mathit{2}k-l)_{h_{i}+n}+dim$ $M(z$ h- -2k+l)hi+n} 26 $\sum_{k=1}^{\infty}\dim M(z h_{i})(k)_{h+n}=\sum_{k=1}^{\infty}\dim N(z h_{i})(k)_{h+n}$ $M(z h_{i})(k)_{h+n}=n(z h_{i})(k)_{h+n}$ 41 1 Resolution Gel fand-gel fand(bgg) highest weight module $L(z$ h Bernsten- $i\in \mathbb{z}$ 42(BGG ) $arrow M(z h_{ i +j})\oplus M$ ( $z$ h- -j)\rightarrow $arrow M(z h_{ i +1})\oplus M(z h_{- i -1})arrow M(z h_{i})$ $arrow L(z h_{i})arrow 0$ 25 1 41 $\mathrm{o}arrow N(z h_{i})(1)=m(z h_{i})(1)arrow M(z h_{i})arrow L(z h_{i})arrow$ $N(z h_{i})(1)$ $0$ $0arrow M(z h_{ i +1})\cap M(z h_{- i -1})arrow M(z h_{ i +1})\oplus M\{z$ $h_{- i -1})arrow N(z h_{i})(1)arrow 0$ 41 $M(z h i +1)\cap M(z h_{- i -1})\cong N(z h i +1)(1)$ $\mathrm{o}arrow N(z h\text{ }+1)$ (1) $arrow M(z h\text{ }+1)\oplus M$( $z$ $h$ - 4)\rightarrow N(z $h_{i}$ $k\in \mathbb{z}_{>0}$ ) (1) $arrow 0$ $\mathrm{o}arrow N(z h\text{ }+k+1)$ (1) $arrow M(z h\text{ }+k+1)$ $\oplus M(z h_{- i -k-1})arrow N(z h\text{ }+k)$ (1) $arrow 0$ Yoneda Product (cup ) 4 2 $L(z h_{0})$ weight $\frac{1}{2}$ $q=e^{2\pi\sqrt{-1}\tau}({\rm Im}\tau>0)$ modular form 41 1 Dedekind \eta $\eta(\tau)=q^{\frac{1}{24}}\prod_{n=1}^{\infty}(1-q^{n})$ 2 theta $m\in \mathbb{z}_{>0}$ n\in Z/2mZ $_{nm}(\tau)$ $\eta(\tau)$ $_{nm}( \tau)=\sum_{k\in \mathbb{z}}q^{m(k+\frac{n}{2m})^{2}}$

$[\mathrm{f}\mathrm{e}\mathrm{f}\mathrm{u}2]$ $\dot{\iota}\in \mathrm{z}$ $\backslash$ $\mathrm{f}\mathrm{f} $ $\backslash$ 24 Vir- $V$ weigh highest weight $(z h)$ highest weight module $V=\oplus V_{h\dagger n}n=0\infty$ $V_{h}=\{+_{n}u\in V L_{0}u=(h+n)u\}$ $(n\in \mathbb{z}_{\geq 0})$ $\mathrm{t}\mathrm{r}_{v}q^{l_{0}-\frac{1}{24}c}=\sum_{n=0}^{\infty}(\dim V_{h+n})q^{h+n-\frac{1}{24}z}$ V normalized character $\text{ }$ highest weight module tr 42 $\{\}q^{l_{0}-\frac{1}{24}c}$ $L(z h_{0})$ normalized character $\mathrm{t}\mathrm{r}_{l(zh_{0})q^{l_{0}-\frac{1}{24}c}=\sum_{\dot{\iota}\in \mathrm{z}}(-1)^{\dot{\iota}}\mathrm{t}\mathrm{r}_{m(zh)q^{l_{0}-\frac{1}{24}c}}}$ $= \eta(\tau)^{-1}\sum(-1)^{}q^{h-\frac{1}{24}(z-1)}$ $=\eta(\tau)^{-1}(\theta_{rp-sqpq}(\tau)-\theta_{rp+sqpq}(\tau))$ $q^{l_{0}-\frac{1}{24}c}$ trl(z ) weight 0 modular form 5 $(z h)\in(\mathrm{v}\mathrm{i}\mathrm{r}^{0})^{*}$ BPZ [FeFhl] $M$ ( $z$ h) Jantzen Filtration 2 Verma Fock module ( semi-infinite form ) ( ) 52 Jantzen Filtration Virasor\sigma Vir Rank2 [Ja] [Mal] BPZ $L(z h_{0})$ normalized character weight O modular form BPZ Data $=\mathrm{t}\mathrm{r}_{l(zh_{0})}q^{l_{0}-\frac{1}{24}c}$ $(r s)$ $\chi_{rs}(\tau)$ vector space $\sum_{rs}\mathbb{c}\chi_{rs}(\tau)$ $SL_{2}$ $(\mathbb{z})$ BPZ [FeFul] [BPZ]? ( ) Virasor [IK] ( ) Virasoro ( ) 1 $(!?)$

$[\mathrm{f}\mathrm{e}\mathrm{f}\mathrm{u}2]$ Feigin 25 [BPZ] Belavin A A Polyakov A M and Zamolodchikov A B Infinite conformal symmetry in trvo-dimensional quantum field theory Nucl Phys $\mathrm{b}241$ (1984) 333-380 $\mathrm{b}\mathrm{l}$ [FeFul] Feigin and Fuchs DB Verma Modules over the Virasoro Algebra hnkts Anal Prilozhen 17 (1983) 91-92 $\mathrm{b}\mathrm{l}$ and Fuchs DB Representations of the Virasoro algebra Adv Stud Contemp Math 7 465-554 Gordon and Breach Science Publ New York 1990 [IK] Iohara K and Koga Y [Ja] Jantzen JC Moduln mit einem h\"ochsten Gewicht Lect Notes in Math 750 Springer-Verlag 1979 [Mal] [TK] Malikov FG Vema modules over $Kac$ -Moody algebras of rank 2 Leningrad Math J 2 No 2 (1991) 269-286 Tsuchiya A and Kanie Y Fock Space Representahons of the Virasoro Algebra -Interiwining Operators- Publ RIMS Kyoto Univ 22 (1986) 259-327