t.dvi

Similar documents
meiji_resume_1.PDF

Microsoft Word - optical.doc

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

untitled

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

V T n n = A r n A n r n U V m m n n UT U = I V T V = I : A = A = UΣV T A T AV = VΣ T Σ : AB T = B T A T V A T A V A V T V = I 3 V A V T V = I : A AK =


1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

行列代数2010A



A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

B ver B

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( ) ( )

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+


: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

( )

Dynkin Serre Weyl

(Digital Watermark)

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

Microsoft Word - 11問題表紙(選択).docx

TOP URL 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

入試の軌跡

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

数学の基礎訓練I

16 B

[ ] Table

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

<4D F736F F D CF097AC E A D836A B2E646F6378>

Jacobson Prime Avoidance

曲面のパラメタ表示と接線ベクトル

II Time-stamp: <05/09/30 17:14:06 waki> ii


TOP URL 1


08-Note2-web

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


dvipsj.8449.dvi

K E N Z OU


³ÎΨÏÀ

数値計算:有限要素法

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

熊本県数学問題正解

量刑における消極的責任主義の再構成

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

ばらつき抑制のための確率最適制御

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

海生研ニュース

i

l t a2 b c f g or t a2 b c f a2 b c f or l t a2 b c f g t a2 b c f g l t


( ) kadai4, kadai4.zip.,. 3 cos x [ π, π] Python. ( 100 ), x cos x ( ). (, ). def print cos(): print cos()

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

p q p q p q p q p q p q p q p q p q x y p q t u r s p q p p q p q p q p p p q q p p p q P Q [] p, q P Q [] P Q P Q [ p q] P Q Q P [ q p] p q imply / m


応力とひずみ.ppt

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Transcription:

T-1 http://adapt.cs.tsukuba.ac.jp/moodle263/course/view.php?id=7 (Keisuke.Kameyama@cs.tsukuba.ac.jp) 29 10 11 1 ( ) (a) (b) (c) (d) SVD Tikhonov 3 (e) 1: ( ) 1

Objective Output s Known system p(s) b = p(s)+n noise n 2: 2 / 2.1 2 2 s(i, j) (0 i<m,0 j<n) = s MN 2 s p p(s) n p(s)+n s p CCD A/D n ( ) p(s)+n 2.2 s(x, y) (Point Spread Function : PSF) k(x, y) b(x, y) =k(x, y) s(x, y) = k(x u, y v)s(u, v)dudv = k(u, v)s(x u, x v)dudv (1) 2

(1) b(i, j) = k(p, q)s(i p, j q) (2) p q k(x, y) s R MN PSF k(x, y) P R MN MN b R MN b = P s (3) b = P s + n (4) n 2.3 (4) P, s = P 1 b = s + P 1 n (5) P (3) ŝ = argmin P s b 2 (6) s P P (3) ŝ = P b (7) ( ) P P = P 1 ŝ = ŝ + P n (8) 3

2 P n P n ( ) (Ill-posed inverse problem) (8) 2.4 P (Singular Value Decomposition : SVD) P R p q P = UΣV T (9) U =[u 1 u p ] R p p, V =[v 1 v q ] R q q (10) U T U = I p, V T V = I q Σ ( ) σ 1 σ 2... σ r 0, (r = min(p, q)) (11) ( ) σ 1 0 0 0 0 0 σ Σ= 2 0 0 0....... 0 0 σ p 0 0 Rp q (p<q ) (12) P σ 1 0 0 0 0 0 σ P =[u 1 u q ] 2 0 0 0....... 0 0 σ p 0 0 v 1. v q = p σ i u i v T i (13) σ i u i v T i P U V P =(UΣV T ) =(V T ) Σ U =(V T ) 1 Σ U 1 = V Σ U T (14) 4

Σ 1/σ 1 0 0 0 1/σ 2 0..... Σ = 0 0 1/σ p R q p (p<q ) (15) 0 0 0... 0 0 0 P (13) P = r v i u T i σ i (r = min(p, q)) (16) v i u T i (8) ŝ ŝ = ŝ + r u T i n σ i v i (r = min(p, q)) (17) (11) (17) P cond(p )=σ 1 /σ r (18) 2.5 (Truncated Singular Value Decomposition : TSVD ) TSVD θ>0 k P σ 1... σ k θ σ k+1...σ r (19) P k = k v i u T i σ i (20) 5

ŝ k = P k b = P k (P s + n) (21) k +1 2.6 Tikhonov Tikhonov ( (6)) ( ) E(s) = 1 2 P s b 2 + λ2 2 s 2 (22) ŝ = argmin E(s) (23) s λ (22) 2 ( 1 ) (23) ŝ E(s) (gradient) 0 n ( σ 2 ) ŝ λ = argmin E(s) = i vi u T i s σi 2 + b = VT 1 Σ U T b (24) λ2 σ i U V P P = UΣV T T 1+ λ2 0 σ 1 2 T =... (25) 0 1+ λ2 σn 2 ( ) Tikhonov ŝ λ (24) σ2 i σi 2+λ2 σ i >> λ 1 σ i << λ 0 λ 6

2.7 E D (s) = 1 2 P s b 2 2 + λ2 2 Ds p p (26) p p- (2- ) x p =( i x i p ) 1/p (27) D s 1 ( ) 2 D 1 ( ) p =1 Total Variation (TV) E D (s) s ( B ) 3 web (Moodle) Moodle B(T-1) http://adapt.cs.tsukuba.ac.jp/moodle263/course/view.php?id=7 ( ) t1@adapt.cs.tsukuba.ac.jp ( A-F) ( G-I J-L) 3 10/11, 13 7

10/18 (3F902) 11/1 1 A, B (manaba) 12/8 2 C, D, E (manaba) 2/14 3 F (manaba) 3.1 OpenCV OpenCV[1-4] OpenCV - GUI OpenCV Macintosh Moodle OpenCV 3.2 C or C++? OpenCV C C++ OpenCV C version 2 C++ C C C C, C++ C C++ 3.3 OpenCV 8 PNG PGM(Portable Gray Map) JPEG GIMP netpbm 8

[1] OpenCV ( http://opencv.org/) [2] OpenCV OpenCV [3]G.Bradski,A.Kaehler: OpenCV - [4] OpenCV ( http://opencv.jp) 4 4.1 OpenCV A OpenCV Moodle 2 (sample1.c, sample2.c) 2 (1) (2) (3) ( 2 ) (4) (5) OpenCV OpenCV (1) (2) (3) (4) (5) (1) (4) (6) (4) PNG PGM 4.2 B s(x) s(x) (Signal to Noise Ratio : SNR) Peak Signal to Noise Ratio : PSNR ( ) M 2 PSNR(dB) =10log 10 1 N x s(x) (28) s (x) 2 M, N 9

$ psnr < > < > 2 PSNR GIMP 4.3 C ( ) PSF OpenCV 0 PSF (1) (2) 2 D PSF p(x) = p 11 p 12 p 13 p 21 p 22 p 23 p 31 p 32 p 33 R 3 3 1. s(x) b(x) M N =3 3(pixel) (3) s R 9, b R 9 PSF P R 9 9 PSF P 0 2. PSF ( ) C 4.4 E PSF PSF n (n =1...7) 0 10

$ degrade < > <PSF > <0 (1-7)> < > PSF PSF 4.5 A-E F P F 32 32(pixel) 2 1 2 PSF n =0, 1, 4 3 (n =0 ) 6 P ( (8)) PSNR PSF PSF ( ) 1 ( ) ( ) OpenCV G P (MN) 2 A PSF 1,2 100 100 (pixel) 6 PSF A 11

A PSNR H TSVD θ PSNR PSNR PSNR θ (k) PSF 2 θ F G PSF I Tikhonov λ PSNR PSNR λ PSF 2 λ F G PSF ( ) J ( PSF ) ( ) K L Total Variation PSNR B 12

A PSF M,N P (MN) 2 M = N = 50(pixel) ( ) PSF k(x, y) =r(x)c(y) (29) PSF K = cr T = c 1 c 2. c m [ ] r 1 r 2 r n (K R m n, c R m, r R n ) (30) PSF K = cr T = c 1 c 2 c 3 [ r 1 r 2 r 3 ] = c 1 r 1 c 1 r 2 c 1 r 3 c 2 r 1 c 2 r 2 c 2 r 3 c 3 r 1 c 3 r 2 c 3 r 3 (31) PSF S R M N r c N N M M (Toeplitz) r 2 r 1 c 2 c 1 r 3 r 2 r 1 c 3 c 2 c 1 r 3 r 2 r 1 c 3 c 2 c 1 A r =......... R N N, A c =......... R M M r 3 r 2 r 1 c 3 c 2 c 1 r 3 r 2 r 1 c 3 c 2 c 1 r 3 r 2 c 3 c 2 (32) PSF (c 2, r 2 ) PSF ( ) B R M N B = A c SA T r (33) 13

(33) SVD Ŝ = A 1 c B(A T r ) 1 = V c Σ 1 c Uc T BU r Σ 1 r Vr T (34) SVD A c = U c Σ c V T c, A r = U r Σ r V T r (3) PSF (34) TSVD Tikhonov Σ c Σ r B Total Variation H Total Variation B.1 Total Variation (26) p =1 E D (s) = 1 2 P s b 2 2 + λ2 2 Ds 1 (35) s Tikhonov (1) E D (s) (2) s (1) s s(t +1)=s(t) η E D(s) (36) s η s B.2 Ds 1 D 14

s(x, y) d(x, y) =[ x s(x, y), y s(x, y)]t =[s x (x, y),s y (x, y)] T (37) Ds 1 d(x, y) 1 Ds 1 = s x (x, y) + s y (x, y) (38) x y x y s x (x, y) = s(x +1,y) s(x, y) s y (x, y) = s(x, y +1) s(x, y) [ ] [ 1, 1], 1 1 (PSF) L x, L y Ds 1 = L x s 1 + L y s 1 (39) E D (s) = 1 2 P s b 2 2 + λ2 2 L xs 1 + λ2 2 L ys 1 (40) E PSF L x, L y B.3 s Ds 1 s s E d (s) = s E d(s) 2 2 Tikhonov 1 s R { s s = 1 (s>0) 1 (s<0) = sign(s) (41) sign(s) s ±1 s R, a R s as = a (s >0) (a >0) a (s <0) (a >0) a (s >0) (a <0) a (s <0) (a <0) = a sign(as) (42) 15

s R n [ s s 1 = s 1 n s i... s n T n s i ] =[sign(s 1 )... sign(s n )] T = Sign(s) (43) Sign(s) s ±1 Sign([3 4] T )=[+1 1] T. s R n, A =[a ij ] R m n s As 1 = = m ( s 1 n a ij s j )... j=1 [ m a i1 sign(a i1 s 1 )... s n ( m n a ij s j ) j=1 m a in sign(a in s n ) = A T Sign(As). (44) T ] T B.4 s E D (s) s E D (s) =P T P s P T b + λ2 2 (LT x Sign(L xs)+l T y Sign(L ys)) (45) Total Variation TSVD Tikhonov 16