dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

Similar documents
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

DVIOUT

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

高等学校学習指導要領

高等学校学習指導要領

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

webkaitou.dvi

Chap11.dvi

2011de.dvi

A

function2.pdf


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

no35.dvi

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

Part () () Γ Part ,

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


1

1

untitled


名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

II 2 II

v er.1/ c /(21)

mugensho.dvi

- II

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

DE-resume

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

x ( ) x dx = ax

1 I p2/30

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Untitled

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

応力とひずみ.ppt

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

Korteweg-de Vries

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

08-Note2-web

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

untitled

untitled



Transcription:

+ P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy = 0 (α ) (4) y = Ce αx (5) 18

Q(x) 0 (1) inhomogeneous P (x) α + αy = Q(x) (1.23) 5.2 α αy = Q(x) (6) ( ) y = e αx e αx Q(x) + C = Ce αx + e αx e αx Q(x) (7) 1 y = e αx (e αx y) (6) = d {eαx (e αx y)} = αe αx (e αx y) + e αx d {e αx y} = αy + e αx d {e αx y} e αx d {e αx y} = Q(x) d {e αx y} = e αx Q(x) x e αx y = e αx Q(x) + C 1 y α α α 19

( ) y = e αx e αx Q(x) + C = Ce αx + e αx e αx Q(x) 5.1 2y = x (7) y = Ce 2x + e 2x xe 2x. 2 { xe 2x = x 1 } 2 e 2x ( = {x} 1 ) 2 e 2x + x ( 12 ) e 2x = 1 e 2x x 2 2 e 2x = 1 4 e 2x x 2 e 2x = 1 4 e 2x (1 + 2x). y = Ce 2x + e ( 2x 1 ) 4 e 2x (1 + 2x) = Ce 2x 1 + 2x 4. 2 pp.116-120. 20

(7) C y = e αx e αx Q(x) 1 Q(x) = eαx D α e αx Q(x) (8) (6) α = 0 1 D Q(x) = Q(x) (9) 1 D Ce αx (6) Q(x) (7) = + 5.1 (1) (3) (5) + 2y = 0 (2) 3y = x 2y = ex (4) + y = x2 + 2y = sin x (6) 2y = cos x 5.2 P (x) + P (x)y = Q(x) 21

5.3 + P (x)y = Q(x) (10) { y = e R P (x) = Ce R P (x) + e R P (x) } e R P (x) Q(x) + C e R P (x) Q(x) (11) 3 e R P (x) e R P (x) Q(x) (10) = d R P (x) {e (e R P (x) y)} = P (x)e R P (x) (e R P (x) y) + e R P (x) d {er P (x) y} = P (x)y + e R P (x) d {er P (x) y} (10) e R P (x) d {er P (x) y} = Q(x) d {er P (x) y} = e R P (x) Q(x) x e R P (x) y = e R P (x) Q(x) + C { y = e R P (x) = Ce R P (x) + e R P (x) } e R P (x) Q(x) + C e R P (x) Q(x). 3 Q(x) = 0 (7) 22

4 e R P (x) e R P (x) P (x) 5.2 x + y = 4x(1 + x2 ) x + y x = 4(1 + x2 ) P (x) = 1 x, Q(x) = 4(1 + x2 ) 1 = log x x e log = e R P (x) e R P (x) = e log x = e log x 1 = 1 x, = x. (11) y = C x + 1 4 x (1 + x 2 ) x = C x + 1 4x(1 + x 2 ) x = C x + 1 x (2x2 + x 4 ) = C x + 2x + x3. 1 x x 4 x (1+x2 ) x x = 0 4 p.27 23

5.2 5.3 (11) 5.4 (1) x + (1 + x)y = ex (2) x + y = x log x (3) + 2y tan x = sin x (4) sin x cos x + y = 2 tan x (5) (1 + x 2 ) = 2(1 xy) (6) x2 y + y + 1 + (x + x 3 ) = 0 y 1 (x), y 2 (x) + P (x)y = 0 c 1 y 1 (x) + c 2 y 2 (x) (c 1, c 2 ) d {c 1 1y 1 + c 2 y 2 } = c 1 + c 2 2 = c 1 ( P (x)y 1 ) + c 2 ( P (x)y 2 ) = P (x)(c 1 y 1 + c 2 y 2 ) d {c 1y 1 + c 2 y 2 } + P (x)(c 1 y 1 + c 2 y 2 ) = 0 c 1 y 1 + c 2 y 2 y 1 (x), y 2 (x) + P (x)y = Q(x) ( ) d {y 2 2 y 1 } + P (x)(y 2 y 1 ) = + P (x)y 2 = Q(x) Q(x) = 0 ( ) 1 + P (x)y 1 24

y 2 y 1 y 2 (x) y 1 (x) = C 0 e R P (x) y 2 (x) = y 1 (x) + C 0 e R P (x) 5.3 5.3 + y x = x2 y 3 y z = y 1 3 = y 2 dz = 2y 3. 2y 3 3 2y y 2y 3 x = 2y 3 x 2 y 3, dz 2 x z = 2x2 z 5.3 (11) z = e R 2 x ( 2 = x ( 2 2 = x 2 ( 2x + C) = 2x 3 + Cx 2. ) x 2 e R 2 x + C ) x 2 x 2 + C z = y 2 2x 3 y 2 + cx 2 y 2 = 1. 25

5.5 + P (x)y = Q(x)yα (α 0, 1) (12) z = y 1 α (12) Bernoulli z = y 1 α x dz = (1 α)y α. (1 α)y α (12) (12) α (1 α)y + (1 α)p (x)y1 α = (1 α)q(x). dz + (1 α)p (x)z = (1 α)q(x) z 5.3 (1) 3 + xy = x y 2 (2) x 2 xy + y2 = 0 (3) x 3 = x2 y y 4 cos x (4) = x2 y 6 y x 26

5.6 = f(x) + g(x)y + h(x)y2 (13) 5 (13) Riccati y = ϕ(x) (13) ϕ (x) = f(x) + g(x)ϕ(x) + h(x){ϕ(x)} 2. u = y ϕ(x) x du = ϕ (x) = ( f(x) + g(x)ϕ(x) + h(x){ϕ(x)} 2) = f(x) + g(x)y + h(x)y 2 ( f(x) + g(x)ϕ(x) + h(x){ϕ(x)} 2) = g(x)(y ϕ(x)) + h(x)(y 2 {ϕ(x)} 2 ) = g(x)(y ϕ(x)) + h(x)(y ϕ(x))(y + ϕ(x)) = g(x)u + h(x)u(u + 2ϕ(x)) du (g(x) + 2h(x)ϕ(x))u = h(x)u2. (12) α = 2 z = u 1 5.4 x y + 2y2 = 2x 2 = 2x + y x 2y2 x 5 (13) h(x) 0 f(x) 0 27

f(x) = 2x, g(x) = 1 x, h(x) = 2 x (13) y = x u = y x ( du + 4 1 ) u = 2 x x u2 z = u 1 ( dz 4 1 ) z = 2 x x 28