( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

Similar documents
Risa/Asir ,,. 2 Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, Holonomic Gradient Method for Two Way Contingency Table

Mantel-Haenszelの方法

kato-kuriki-2012-jjas-41-1.pdf

CVaR

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


第10章 アイソパラメトリック要素

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x



0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

main.dvi

IV (2)

第5章 偏微分方程式の境界値問題

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

スケーリング理論とはなにか? - --尺度を変えて見えること--

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

untitled

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

³ÎΨÏÀ

dvi

北アルプス_燕岳~穂高_-2.doc

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

ohpmain.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Perturbation method for determining the group of invariance of hierarchical models

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

meiji_resume_1.PDF

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

Morse ( ) 2014

エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

プリント

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

1


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

振動と波動

1 Tokyo Daily Rainfall (mm) Days (mm)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

201711grade1ouyou.pdf


わが国企業による資金調達方法の選択問題

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310

untitled

gr09.dvi

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

untitled

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

ii

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

TOP URL 1

ohpr.dvi

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

waseda2010a-jukaiki1-main.dvi

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

第8章 位相最適化問題

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

ばらつき抑制のための確率最適制御

D 24 D D D

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

2 2 L 5 2. L L L L k.....

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

Jacobson Prime Avoidance

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

st.dvi

−g”U›ß™ö‡Æ…X…y…N…g…‰

液晶の物理1:連続体理論(弾性,粘性)

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

p12.dvi

本文/目次(裏白)


inkiso.dvi

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

Transcription:

( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au = β ( ). p u u! (1)

Z A (β; p) = 22(2 2 ): A = : û = u = ( 11 0 25 12 1 p25 3 p12 ( u1 u 2 u 3 u 4 Au=β,u N d 0 0 0 1 1 1 0 1 0 0 1 0 1 ) ( 4 7,..., u = 32 5 p u u!, β = (37, 36, 12) T. u ). Au = β u ) ( 0 11,..., u = 36 1 Z A (β; p) = p11 4 11!25!12! 2 F 1 ( 11, 12, 26; y), y = p 2p 3 p 1 p 4 (odds ), ( ) 1 1 Ker A = Zā, ā =, u = û + vā y v /(û+vā)! 1 1 2F 1 (y)/û!. ).

p(ξ) = (exp ξ 1,..., exp ξ n ), ψ(ξ) = log Z(β; p(ξ)). i = p i. E[U i ] = p i i Z Z p=p(ξ) = ψ(ξ) ξ i, ψ(ξ) ξ i = Au=β u i exp(u ξ)/u! Z ( u ) E[U i ] u i. MLE (Maximal likelihood estimation) : ξ E[U] (Au = β u MLE ). 1 2 MLE? E[U]? 3. 4?

( :,, 2014, ) η i = E[U i ], η = (η i ). ξ- η- ( ) moment map E[U]. : ψ(ξ) (strictly ). ξ ψ(ξ) =: ξ η ψ (ξ ) = maxarg ξ (ξ ξ ψ(ξ)) ψ (ξ ) = ξ. ξ- ξ (η ), dual flat line. D[ξ : ξ ] = ψ(ξ) ψ(ξ ) ψ(ξ )(ξ ξ ) (divergence), D[ξ : ξ ] = D [ξ, ξ ]. : ψ(ξ) = log Z(β; p(ξ)).

U = (U 1,..., U n ), Fisher (Fisher s maximal likelihood estimation, MLE), U ( ) pu U! /Z(β, p) p p. Proposition ( ) p Fisher s MLE p E i (p) = p i Z p i /Z = U i.. pu U! /Z(β, p) Ui log p i log U! log Z F. p, F p i = U i p i Z/ p i Z = 0., U i = p i Z/ p i Z.

: M.Michalek, B.Sturmfels, C.Uhler, P.Zwiernik, Exponential Varieties, arxiv:1412.6185 : ξ positive definite m m symmetric matrix. x m-, Z(ξ) = exp R m ( 1 2 x T ξx log Z = m 2 log(2π) 1 2 log det(ξ), log Z = 1 2 ξ 1 ) dx = (2π)m/2 det(ξ) 1/2. Positive defifinite symmmetric matrix PD m convex cone. PM m convex cone. ξ ij log Z = 1 2 ξ (maximal likelihood estimation). log R n x i x j exp X ( 1 ) 2 xt ξx dx = 1 2 E[X i X j ] ( exp 1 ) 2 X T ξx /Z

( MLE) 4 7 32 5 (4, 7, 32, 5) β fix ψ., p 2(ξ)p 3 (ξ) p 1 (ξ)p 4 (ξ), 10.4167. MLE odds. ( ) ξ, MLE odds.. 1,,, :, 39. 71-100 (2010). 2, Algebraic Statistical Methods for Conditional Inference of Discrete Statistical Models, 2015/3, ( ).

R (Z n unimodular ), S (Z d unimodular ) α 1 O SAR =... O, α i 0, α i α i+1. O α d Ker(A : Z n Z d ) Z- {Re d+1,..., Re n }, (Re d+i ) T ā i, Ā = λ = Āξ. exp(λ i) = pāi. 22: Ā = ( 1, 1, 1, 1), p 2p 3 p 1 p 4 ā 1. ā n d (n d) n = n j=1 pāij j, odds ( odds = odds )

MLE? E[U]? ( ). ξ ξ Im A T. E[U](ξ) = E[U](ξ ). Theorem Newton New(Z) ( Z ξ p ) n d., ( odds log ) moment map. E[U] : R n /Im A T relint(new(z)) R n relint., f (ξ) = η ξ log Z(β, p(ξ)). 22: 25 < E[U 21 ] < 36. (1) MLE..

moment map E. 2 3. 4 7 2 32 5 6, generalized odds 2. Z Newton polytope 2.,. p R 2.

moment map E[U](p)..

log Z A.. 1 M.Saito, B.Sturmfels, N.Takayama, Hypergeometric polynomials and Integer Programming, Compositio Mathematica, 115 (1999), 185 204... 2 Holonomic Gradient Method (HGM) (2011 ). Z. HGM= ( ) Z. 3 M.Ogawa, A.Takemura, N.Takayama, An Application of A-hypergeometric Equations to Conditional Maximal Likelihood Estimation of 2 m Contingency Tables, in preparation. D (2015/3 ). 4 Y.Goto, Contiguity Relations of Lauricella s F D Revisited, arxiv:1412.3256. F D 2 m. 5 K.Ohara, N.Takayama, Pfaffian Systems of A-Hypergeometric Systems II Holonomic Gradient Method, arxiv:1505.02947. A-. Macaulay. E[U] before HGM.

E[U](ξ)? (k β ). P k (u, ξ) = exp(u ξ) u!z k (ξ), u S k, k = 1, 2,..., S k = {u N n Au = kβ}, Z k (ξ) = exp(u ξ), u! u S k : k? 1 J.Cornfield, A Statistical Problem Arising from Retrospective Studies, Proceedings of 3rd Berkeley Symposium on Mathematical Statistics and Probability 4 (1956), 135 148. 2,,, 1982. 3 R.L.Plackett, Analysis of Categorical Data, 2nd ed, Griffin, 1981. (pp. 41 (2 2 table), pp. 65 66 (r s table))

: k pu /u! Z(kβ;p)? λ = Āξ, exp(ξ) = p. m = m(λ) ( ) ( IPS (iterative proportional scaling) ). { β = Am, λ = Ā log m. (2) : km. 22, p 2p 3 p 1 p 4 = 1/3 3. 0.0 0.1 0.2 0.3 0.00 0.05 0.10 0.15 0.20 0.25 0 2 4 6 8 10 h2 0 2 4 6 8 10 h3

Theorem β N 0 A int(r 0 A). M = diag(m i ). ( ) P k (u, ξ) = det(ām 1 Ā T ) 1/2 n (u i km i ) 2 (2πk) (n d)/2 exp 2km i, sup i u i km i <φ(k) i=1 P k (u, ξ) P k (u, ξ) 1 0 (k ), φ(k) : φ(k) = o(k 2/3 ), k/φ(k) 2 = o(1).

MLE 1 p = u/ u ( u = u 1 + + u n ). (m odds λ. 2 E[U](p) m.) 2 ξ dual flat line p. (Ė(U)(ξ) ): 1 Y.Goto, K.Matsumoto, Pfaffian equations and contiguity relations of the hypergeometric function of type (k + 1, k + n + 2) and their applications, arxiv:1602.01637. - r 1 r 2 contingency tables HGM (Aomoto-Gel fand E(k, n) twisted cohomology group ). 2 modular method, - -.

. A = 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 2 2 2. p 1 p 2 p 4 p 5, 0 p 3 p 6 p 7. p 4 + p 5 + p 6 + p 7, p 1 + p 4 + p 6, p 2 + p 3 + p 5 + p 7, p 1 + p 2 + p 4 + p 5. cell p = exp(ξ)? (MLE, ). 19 132 0 9 11 52 6 97 p 1, p 2, p 3, p 4. (p 5, p 6, p 7 ). η = (E[U 5 ], E[U 6 ], E[U 7 ]) p η P 0 = (19, 132, 9, 11, 52, 6, 97)/326 (51.9194, 5.99193, 97.0891) P 0 + (0, 0, 0, 0, h 1, h 2, h 3 ) h = (0.000256154, 0.000152585, 0.00310983) (52.0006, 6.00006, 96.9993)