OCAMI

Similar documents
1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

「産業上利用することができる発明」の審査の運用指針(案)

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

Dynkin Serre Weyl

211 ‚æ2fiúŒÚ

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

ユニセフ表紙_CS6_三.indd

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

SO(2)


I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1


untitled

untitled


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1



1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


0-Ł\04†E01.pdf

xyr x y r x y r u u

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

12 2 e S,T S s S T t T (map) α α : S T s t = α(s) (2.1) S (domain) T (codomain) (target set), {α(s)} T (range) (image) s, s S t T s S

等質空間の幾何学入門


A B A E

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


ユニセフ表紙_CS6_三.indd

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II Lie Lie Lie ( ) 1. Lie Lie Lie

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

,2,4

2000年度『数学展望 I』講義録

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

01

量子力学 問題

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

(個別のテーマ) 医療機器の使用に関連した医療事故

(個別のテーマ) 薬剤に関連した医療事故

(個別のテーマ) 放射線検査に関連した医療事故

(個別のテーマ) 医療処置に関連した医療事故

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

untitled


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

s s U s L e A = P A l l + dl dε = dl l l

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

2 2 L 5 2. L L L L k.....



untitled

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1


( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

- 1 -

%

ID010-2

2

I II III IV V

Untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

- - i



untitled


Transcription:

OCAMI 2015 12 16

1. 2. R 3. Lie 4. U(n), SU(n), O(n), SO(n), Sp(n) 5. U(n), SU(n), O(n), SO(n), Sp(n) 6. Lie 7. G 2 G 2 /SO(4)

1. M Riemann M Riemann def x M, s x : s.t. s 2 x = id, x s x s x x R n S n T n S M antipodal set def x, y S s x (y) = y S great antipodal set def S = max{ A A M } =: # 2 M M 2-number

1 M = R n {x} x R n 2 M = S n {x, x} x S n R n+1 3 M = RP n {Re 1,..., Re n+1 } e 1,..., e n+1 R n+1 o.n.b. 4 M = T n # 2 T n = 2 n I(M) M I(M) M M G := I 0 (M) M = G/K K := {g G go = o} (o M)

Ko = o K T o M R Riemann G/K Riemann Hermite R G/K Lie Lie SO(n) U(n) Sp(n) Grassmann G k (K n ) K = R, C, H) S n R Hermite T.- 2012

2. R 1 T.- 2013 R M 1 M 2 M I 0 (M) 3 M Weyl W R Hermite ˆM = Ĝ/ ˆK M = F (τ, ˆM) τ ˆM W Ĝ I τ : g τgτ 1 Weyl

R Riemann Grassmann G k (R n ) 2k n G 1 (R n ) = S n 1 G 2 (R n ) = Q n 2 (C) 2 R k 3 R 2013 k = 3, 4 G k (R n ) Lie R

3. Lie Lie G Riemann Riemann x G s x (y) = xy 1 x (y G) 1 G s 1 (y) = y y 2 = 1 x 2 = 1, y 2 = 1 s x (y) = y xy = yx 1 S G S = Z 2 Z 2 r S = 2 r r rank(g) r > rank(g)

4. U(n), SU(n), O(n), SO(n), Sp(n) n := ±1... ±1 O(n) ± n := {g n det g = ±1} O(n), U(n), Sp(n) n SO(n), SU(n) + n

5. U(n), SU(n), O(n), SO(n), Sp(n) U(n) Z = id {z C z = 1} Z µ Z µ U(n)/Z µ U(n) Lie SU(n) = id {z C z n = 1} = Z n Z µ Z n µ µ n SU(n)/Z µ SU(n) Lie D[4] := ±1 0 0 ±1, 0 ±1 ±1 0 O(2) D[4]

D ± [4] := {g D[4] det g = ±1} n n = 2 k l, l 0 s k C(s, n) := D[4] D[4] n/2 s O(n) s D[4] n/2 s 2 T.- µ Z µ U(n) µ θ 1 2µ π n : U(n) U(n)/Z µ U(n)/Z µ

1 n µ π n ({1, θ}c(0, n)) = π n ({1, θ} n ) 2 n µ π n ({1, θ}c(s, n)) (0 s k) (s, n) = (k 1, 2 k ) 2 D[4] C(k 1, 2 k ) = D[4] D[4] 2 D[4] D[4] D[4] = C(k, 2 k ) C(k 1, 2 k )

3 T.- µ n Z µ SU(n) µ θ 1 2µ π n : SU(n) SU(n)/Z µ SU(n)/Z µ 1 n µ π n ( + n ) 2 n µ a k = 1 π n ( + n θ n ), π n ((D + [4] θd [4]) l )

n = µ = 2 π 2 ( + 2 θ 2 ) b k 2 µ = 2 k l, l b1 k = k π n ( + n θ n ), π n(c(s, n)) (1 s k) (s, n) = (k 1, 2 k ) b2 1 k < k π n ({1, θ} + n ), π n({1, θ}c(s, n)) (1 s k) (s, n) = (k 1, 2 k ) n = 4 π 4 ({1, θ} + 4 ) + 4 = 2 2 D[4] D[4] = C(2, 4) π 4 ({1, θ} + 4 )

O(n) = {±1 n } = Z 2 O(n)/{±1 n } O(n) Lie n 2 n SO(n) SO(n) n {±1 n } n {1 n } n SO(n)/{±1 n } SO(n) Lie Sp(n) = {±1} = Z 2 Sp(n)/{±1 n } Sp(n) Lie

±1 : Q[8] := {±1, ±i, ±j, ±k} 4 T.- n 2 2 k l 2 k l I O(n)/{±1 n } π n (C(s, n)) (0 s k) (s, n) = (k 1, 2 k ) II n SO(n)/{±1 n }

1 k = 1 π n ( + n ), π n (D + [4] l ) n = 2 π 2 ( + 2 ) 2 k 2 π n ( + n ), π n (C(s, n)) (1 s k) (s, n) = (k 1, 2 k ) n = 4 π 4 ( + 4 ) III Sp(n)/{±1 n } π n (Q[8] C(s, n)) (0 s k) (s, n) = (k 1, 2 k )

6. Lie G Lie Z G G G/Z = Inn(g) G Lie g Inn(g) g 3 4 II III g = su(n), so(n), sp(n) Inn(g) Aut(g) g Inn(g) G G/Z Ad

5 T.- n 2 2 k l 2 k l I τ : su(n) su(n) ; X X Aut(su(n)) {e, τ}ad(c(s, n)) (0 s k) (s, n) = (k 1, 2 k ) II Aut(so(n)) Ad(C(s, n)) (0 s k) (s, n) = (k 1, 2 k )

III Aut(sp(n)) Ad(Q[8] C(s, n)) (0 s k) (s, n) = (k 1, 2 k )

7. G 2 G 2 /SO(4) Lie G 2 Cayley G 2 G 2 = {e} F (s e, G 2 ) = {g G 2 g 2 = e} = {e} M 1 + M 1 + = G 2 /SO(4) o M 1 + F (s o, M 1 + ) = {o} M 1,1 + M 1,1 + = (S 2 S 2 )/Z 2 x Z 2 = {±1} x (p, q) = (xp, xq) S 2 S 2 π : S 2 S 2 (S 2 S 2 )/Z 2

[p, q] := π(p, q) ( (p, q) S 2 S 2) e 1, e 2, e 3 S 2 S 2 S 2 f 1, f 2, f 3 S 2 S 2 S 2 (S 2 S 2 )/Z 2 A := {[e 1, ±f 1 ], [e 2, ±f 2 ], [e 3, ±f 3 ]} A M 1,1 + A 1,1

6 T.- 1 G 2 /SO(4) {o} A 1,1 7 2 G 2 {e, o} A 1,1 8 3 Aut(g 2 ) Aut(g 2 ) = Inn(g 2 ) = G 2 2