( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Similar documents
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

IA

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

QMI_09.dvi

QMI_10.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

30

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

TOP URL 1

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

i

phs.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Note.tex 2008/09/19( )


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

pdf


201711grade1ouyou.pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

高知工科大学電子 光システム工学科

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

Untitled

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( )

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Abstract I Griffiths

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx


Maxwell

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Xray.dvi



振動と波動

meiji_resume_1.PDF

sec13.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

QMII_10.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Gmech08.dvi

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

第10章 アイソパラメトリック要素

0 0. 0


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Planck Bohr

( ) ,

量子力学 問題

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

all.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

B ver B

newmain.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0


08-Note2-web

v er.1/ c /(21)

keisoku01.dvi

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

ssp2_fixed.dvi

i Γ

( ) (ver )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

量子力学A

??

i

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP



I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Transcription:

2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1

1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h h = 6.626176 10 34 J s (3) ω = 2πν k( 2π/λ) ɛ = hω (4) p = h k (5) h = h 2π = 1.05459 10 34 J s (6) T ν ν + dν u(ν)dν u(ν) = 8πhν3 c 3 1 e hν/k BT 1 X 1 2 mv2 (7) 1 2 mv2 = hν W (8) W ( ) 2

X X X λ = λ λ = h (1 cos θ) (9) m e c λ (λ) ( )X m e X X θ ( ) p λ λ = h p (10) k ( k = 2π/λ) L p = h k (11) p s = L q s (12) q s q s p s dq s = nh (13) n 0 3

1. 1mm 500kW (a) J ev (b) 2. (a) hν/k B T 1 hν/k B T 1 (b) (c) ũ(λ) λ (d) ũ(λ) λ m λ m T = 3. (a) 2300 Å ev( ) (b) 1800 Å 4. (a) X (b) X 5. 6. 1 Å ev (a) X (b) (c) 7. 4

(a) n = 1 (b) Å (c) de dt = e2 6πɛ 0 c 3 v 2 (14) α = 1 4πɛ 0 e 2 hc 1 137 c 3.00 10 8 m/s λ c = h mc 2.43 10 12 m 8. n = 4 n = 1 1.67 10 27 kg 9. ω (a) x p (b) (c) (x-p ) (d) L = 1 2 mẋ2 1 2 mω2 x 2 (15) 5

2. Schrödinger Lagrangian L(x i, x i ) Hamiltonian H(x i, p i ) (i = 1 N) Lagrange (x i ) p i d L L = 0 (16) dt x i x i p i = L (17) x i L = T V (T : V : ) Hamiltonian H H = N ẋ i p i L (18) i=1 dx i dt dp i dt = H p i (19) = H x i (20) H = T + V p ˆ p = i h (21) E i h t (22) H = E ψ( r, t) Schrödinger r = (x, y, z) = ( x, y, p2 ) H = z 2m + V { h2 } 2 Ĥ( r, i h )ψ( r, t) = 2m + V ψ( r, t) ψ( r, t) = i h (23) t 6

ψ( r, t) 2 t r t r d r = dxdydz ψ( r, t) 2 d r d r ψ( r, t) 2 = 1 (24) F ( r, p) ( ) F ( r, p) ˆF ( r, i h ) (25) Hamiltonian F F = d rψ ( r, t) ˆF ( r, i h )ψ( r, t) (26) ˆF f ˆF ( r, i h )χ( r) = f χ( r) (27) χ( r) ˆF f f f 1 f 2 χ i ( r) d rχ i ( r)χ j ( r) = δ ij (28) ˆΩ ˆΩ ( ) (φ, ˆΩψ) = (ˆΩ φ, ψ) (29) [Â, ˆB] Â ˆB ˆBÂ (30) Ω Ω = Ω (31) 7

10. Lagrangian L = m r 2 V ( r) 2 (a) Lagrange Newton (b) Hamiltonian H = p2 + V ( r) Hamilton Newton 2m 11. E( r, t) B( r, t) q (a) Newton (b) Lagrangian L = m r 2 2 qφ( r, t) + q A( r, t) r (32) Newton A φ (c) p (d) Hamiltonian Schrödinger 12. E B E = φ t A (33) B = A (34) φ( r, t) φ ( r, t) = φ( r, t) + λ( r, t) t (35) A( r, t) A ( r, t) = A( r, t) λ( r, t) (36) 13. 14. m V 3 m d2 r = V dt2 ψ ψ 0 ψ 0 8

15. V t (a) ψ( r, t) ψ( r, t) = T (t)u( r) (37) T (t) = exp( iet/ h) (b) u( r) { h2 } 2 2m + V u( r) = Eu( r) (38) Schrödinger (27) (28) u( r) E E 1 E 2 u 1 ( r) u 2 ( r) u i ( r) d ru i ( r)u j ( r) = δ ij (39) 16. F f i χ i ( r) ψ( r, t) ψ( r, t) = i c i (t)χ i ( r) (40) ψ( r, t) 2 (a) c i (t) 2 = 1 (41) i (b) F = c i (t) 2 f i (42) i c i (t) t F f i c i (t) 2 17. E i u i ( r) ψ( r, t) ψ( r, t) = i c i (t)u i ( r) (43) 9

Schrödinger c i (t) E i t = 0 ψ( r, 0) = F ( r) (43) c i (t) 18. (a) a (b) (c) (b) E = p2 2m + mω2 x 2 2 x (c) E = p2 x p = h/2 2m r p = h r e2 4πɛ 0 r 19. V (r) = α r s (44) α > 0 s > 0 s 2 20. V ( r, t) 3 m (a) ψ( r, t) Schrödinger (b) ρ( r, t) = ψ( r, t) 2 ρ t (c) J( r, t) J( r, t) = h 2mi {ψ( r, t) ψ( r, t) ψ( r, t) ψ( r, t)} (45) ρ t + J( r, t) = 0 (46) 10

(d) Schrödinger J( r, t)? (e) J( r, t)? J( r, t) 21. Â ˆB (a) Ĉ (b) [Â, ˆB] = iĉ (47) A B Ĉ /2 (48) A 2 = (Â Â )2 B 2 = ( ˆB ˆB ) 2 22. [Â, ˆBĈ] = [Â, ˆB]Ĉ + ˆB[Â, Ĉ] (49) [Â ˆB, Ĉ] = Â[ ˆB, Ĉ] + [Â, Ĉ] ˆB (50) 23. x p [x, p] = i h (51) (a) [x, p n ] = i hnp n 1, [p, x n ] = i hnx n 1 (52) n (b) f(x) g(p) [x, g(p)] = i h dg dp, df [p, f(x)] = i h dx (53) 24. H (H = H ) 11

25. Â 2 ψ 1 ψ 2 (a) ψ 2 = c 1 ψ 1 + c 2 ψ 2 (b) ψ 1 ψ 2 c 1 c 2 (ψ 1, ψ 2) = 0 12

3. x J i J r J t T R 26. (a) y(0) = y(π) = 0 (b) dy dx = dy x=0 dx = 0 x=π (c) y(π) = 0 dy dx = 0 x=0 T = J t J i (54) R = J r J i (55) d 2 y + λy = 0 (56) dx2 27. Schrödinger (a) (b) (c) 13

2 28. { V (x) = 0 ( x < L/2) ( x > L/2) (57) (a) (b) { (L ) } 2 29. u(x) = A x 2 A 2 (a) (b) (c) E ( E) 2 30. V (r) = V 1 (x) + V 2 (y) + V 3 (z) Schrödinger } { h2 d 2 + V 2m dx 2 i (x i ) u i (x i ) i = ɛ i u i (x i ) (x 1 = x, x 2 = y, x 3 = z) ɛ = ɛ 1 + ɛ 2 + ɛ 3 31. L/2 < x, y, z < L/2 (a) (b)? L 4 < x, y, z < L 4 14

32. { 0 ( x < L/2) V (x) = ( x > L/2) V 0 (58) 33. (x < 0) V (x) = 0 (0 < x < L) V 0 (L < x) (59) V 0 V 0 > 0 ( ) 34. 2V 0 (x < 0) V (x) = 0 (0 < x < a) V 0 (a < x) (60) 1 35. i h d dx (a) hk (b) (a) L/2 < x < L/2 ψ(x) = ψ(x + L) hk n = 2π hn L n = 0, ±1, ±2, (61) (c) 15

(d) ψ n (x) (f(x) = f(x+l)) f(x) = n F n ψ n (x) (62) F n L/2 L/2 dx f(x) 2 = n F n 2 (63) (e) L ξ(k n ) L dkξ(k) (64) 2π (f) n f(x) = F (k) = dx f(x) 2 = 1 2π 1 2π dkf (k)e ikx (65) dxf(x)e ikx (66) dk F (k) 2 (67) f(x) (63) F n 2 k n = p n / h (67) F (k) 2 dk k k + dk p 1 2π h ψ p (x) = 1 2π h e ipx/ h (68) dxe i(p p )x/ h = δ(p p ) (69) 16

36. k hk f(x) = F (p) = dxx n f(x) 2 = dxf(x) ( i h d dx 1 2π h 1 2π h dpf (p)e ipx/ h (70) dxf(x)e ipx/ h (71) ( dpf (p) i h dp) d n F (p) (72) ) n f(x) = dpp n F (p) 2 (73) f(x) x F (p) p x [x, p] = i h x = i h d dp (74) F (p, t) Schrödinger { p 2 2m + V (i h d } dp ) = i h F (p, t) (75) t 37. } ψ(x) = A exp { x2 2a + ik 0x 2 (76) (a) (76) A (b) (c) (d) x (e) p (f) (d) (e) x p = h/2 x p 38. t = 0 (76) t > 0 17

(a) ψ(x, t) ψ(x, t) = 1 2π dkc(k, t)e ikx (77) 1 Schrödinger C(k, t) (b) C(k, t) (c) (b) (77) ψ(x, t) (d) 39. { V (x) = 0 (x < 0) V 0 (x > 0) (78) x = E V 0 > 0 (a) 0 < E < V 0 (b) E > V 0 40. 0 (x < 0) V (x) = V 0 (0 < x < a) V 1 (a < x) (79) x = E V 0 > 0 V 1 > 0 (a) 0 < E < V 0 E = V 0 E V 0 V 1? 18

(b) E > V 0? ( 1)? 41. Schrödinger } { h2 d 2 2m dx + h2 2 m Ωδ(x) u(x) = Eu(x) (80) Ω δ(x) (a) u(x) x = 0 u (x) u (+0) u ( 0) (b) x = E (c) Ω < 0 42. V (x, y, z) = 1 2 mω2 (x 2 + y 2 + z 2 ) (81) 3 E = (N + 3/2) hω (82) 43. m V (x) = 1 2 mω2 x 2 ψ(x) = A n=0 ( 1 2 ) n u n (x) (83) A u n (x) E n = (n + 1/2) hω (a) A (b) 19

44. m V (x) = 1 2 mω2 x 2 x = 0 x > 0 (a) (b) u n (x) 45. m k x 1 x 2 k m x k m x 1 2 k (a) Hamiltonian x 1 x 2 p 1 p 2 (b) X = (x 1 + x 2 )/2 x = x 1 x 2 P p (c) (b) 46. m N k (N N 1 1 ) N-1 N 1 2 3 l la x l 20

(a) Lagrangian l mẍ l = k(2x l x l+1 x l 1 ) (84) (b) x l = q A(q, t) exp(iqla) (85) π a < q π a q = 2πn (n = 0, ±1, ±2, ) A(q) Na (c) (85) q q + 2π/a q π a < q π ( 0 < q 2π/a ) a q N 47. q (x ) E (a) Schrödinger (b) Schrödinger E = 0 u n (x) (c) p = qx χ = p / E E=0 48. z A = (0, Bx, 0) B = A x y ( m e) (a) Schrödinger (b) ψ(x, y) = f(x)e iky 49. 21

(a) V (x) = h2 u {δ(x + a) + δ(x a)} (86) 2ma (I) (II) (b) E > 0 x = (c) V (x) = h2 u 2ma n= δ(x + na) (87) 50. (a) H = p2 2m + 1 2 mω2 x 2 (88) a = a = mω 2 h x + mω 2 h x i 2mω h p (89) i 2mω h p (90) (i) [a, a ] = 1 (91) (ii) H = hω(a a + 1/2) (92) (b) a a ν u ν ν ν = 0 u 0 ν = n 22

(n 1) u n u n = 1 n! a n u 0 au n = nu n 1 (93) a u n = n + 1u n+1 (94) (c) au 0 u 0 u n H n (x) = ( 1) n e x2 dn dx n e x2 (d) a a (u n, xu n ) (u n, x 2 u n ) u n x p = (n + 1/2) h 51. a (95) aψ λ = λψ λ (96) (a) ψ λ = n=0 c n(λ)u n c n (λ) (ψ λ, ψ λ ) = 1 ψ λ = exp( λ 2 /2) exp(λa )u 0 (97) (b)? (c) a? (d) (ψ ν, ψ λ ) ψ ν aψ ν = νψ ν (e) 1 dλ dλ ψ λ (x)ψ π λ(x ) = δ(x x ) (98) Reλ = λ Imλ = λ u n (x)u n(x ) = δ(x x ) n=0 23

52. Schrödinger ψ(x, t) i h = Hψ(x, t) (99) t H t (a) H {φ n (x)} (Hφ n = ɛ n φ n ) ψ(x, t) = n a n (t)φ n (x) (100) (φ n, φ m ) = δ nm a n (t) (b) ψ(x, t) = dx G(x, t; x, t )ψ(x, t ) (101) G(x, t; x, t ) = n φ n (x)φ n(x )e iɛn(t t )/ h (102) (c) φ n (x)φ n(x ) = δ(x x ) (103) (d) θ(t) n G + (x, t; x, t ) G(x, t; x, t )θ(t t ) (104) [i h t H(x) ] G + (x, t; x, t ) = i hδ(x x )δ(t t ) (105) θ(t) = dθ dt (e) G(x, t; x, t ) { 0 (t < 0) 1 (t > 0) (106) = δ(t) (107) 24