5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

Similar documents

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

all.dvi

構造と連続体の力学基礎

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

pdf

LLG-R8.Nisus.pdf

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Note.tex 2008/09/19( )

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

08-Note2-web

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

30


D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

( ) ) AGD 2) 7) 1

IA

Untitled

meiji_resume_1.PDF

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

高知工科大学電子 光システム工学科

Maxwell


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

B ver B

untitled

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

ohpr.dvi


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

2011de.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2


I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

TOP URL 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


/Volumes/NO NAME/gakujututosho/chap1.tex i

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

第10章 アイソパラメトリック要素

/Volumes/NO NAME/gakujututosho/chap1.tex i

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

II Brown Brown

I 1


( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

I ( ) 2019

201711grade1ouyou.pdf

sec13.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

keisoku01.dvi

i

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

chap9.dvi

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

December 28, 2018


2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

gr09.dvi

Gmech08.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

第1章 微分方程式と近似解法

Part () () Γ Part ,

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Grushin 2MA16039T

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Transcription:

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q()) A(p(t), q(t)) dγ() e βh (p(),q()) (5.3) 1 51

Ĥ = Ĥ + h ˆM (5.4) t = ˆρ() = e βĥ Tr e βĥ (5.5) ˆM() βĥ Tr ˆMe h Tr e βĥ t = Heisenberg ˆM(t) = e iĥt/ h iĥt/ h ˆM()e (5.6) (5.7) (5.5) (5.4) ˆM(t) h = Tr [ ] e βĥ ˆM(t) Tr e βĥ = Tr [ ( ] e βĥ 1 + βh ˆM + ) ˆM(t) Tr [ ( e βĥ 1 + βh ˆM + )] = Tr [ ] e βĥ ˆM(t) + βh Tr [ ] e βĥ ˆM ˆM(t) Tr [ ] e βĥ ˆM(t) βh Tr [ ] e βĥ ˆM Tr e βĥ Tr e βĥ Tr e βĥ Tr e βĥ = ˆM(t) + βh ˆM() ˆM(t) βh ˆM(t) ˆM() + + = ˆM + βh ( ˆM() ˆM(t) ˆM 2 ) + (5.8) ˆM(t) = ˆM (5.8) δm(t) = ˆM(t) h ˆM(t) = βh ( ˆM() ˆM ) ( ˆM(t) ˆM ) + = βh δ ˆM()δ ˆM(t) + = βh C δmδm (t) + (5.9) [ ] h(t) δm(t) = χ(t, t )h(t ) + O(h 2 ) (5.1) 52

χ(t, t ) (response function) (generalized susceptibility) χ(t, t ) = δm(t) δh(t ) (5.11) χ(t, t ) t t h(t) = h δ(t t ) δm(t) = h χ(t, t ) + O(h 2 ) (5.12) χ h(t) δm(t) χ(t, t ) : t < t χ(t, t ) = χ(t, t ) : χ(t, t ) = χ(t t ) (5.13) θ(t) Heaviside h(t) = h θ( t) (5.14) θ(x) { = for x, = 1 for x. (5.15) δm(t) = h χ(t t ) = h χ(τ)dτ = h χ(τ)dτ (5.16) t dm(t) = hχ(t) (5.17) (5.9) = β d C δmδm(t) for t >, χ(t) = for t <. (5.18) [ ] W = F dx E = W = hdm (5.19) 53

ω h(t) = Re [ h(ω)e iωt] = 1 2 ( h(ω)e iωt + h (ω)e iωt) (5.2) Ẇ = 1 T T h dm = 1 T T dh δm(t) (5.21) (ωt 1 ) (5.1) Ẇ = 1 T dh χ(t, t )h(t ) (5.22) T (5.2) Ẇ dw = 1 T = 1 T T T iω 2 iω 2 ( h(ω)e iωt h (ω)e iωt) (5.18) t dw T χ(t t )h(t ) ( h(ω)e iωt h (ω)e iωt) χ(t )h(t t ) (5.23) = 1 T iω ( h(ω)e iωt h (ω)e iωt) χ(t ) 1 ( h(ω)e iω(t t ) + h (ω)e ) iωt(t t ) 2 2 = i ω 4 h(ω) 2 χ(t ) ( e iωt e iωt ) = i ω 4 h(ω) 2 (χ( ω) χ(ω)) = ω 2 h(ω) 2 χ (ω). (5.24) χ(ω) χ(ω) χ (ω) + iχ (ω) (5.25) χ( ω) = χ (ω) Ẇ ( ) ( ) [ ] (5.18) Fourier χ(ω) = = β χ(t)e iωt dc δmδm(t) = βc δmδm (t)e iωt e iωt + βiω C δmδm (t)e iωt (5.26) 1 C δmδm ( ) = βc δmδm (t = ) 2 C δmδm (t) = C δmδm ( t) βiω C δmδm (t)e iωt = βiω 1 C δmδm (t)e iωt = i βω 2 2 C δmδm(ω) (5.27) 54

C δmδm (ω) χ (ω) = ωβ 2 C δmδm(ω) (5.28) (5.24) (fluctuation dissipation theorem) Onsager ( ): (5.28) χ (k, ω) = 1 eβ hω C(k, ω) (5.29) 2 h [Kramers-Krönig ] χ(t) Fourier χ( ω) = χ (ω) χ ( ω) = χ (ω) χ ( ω) = χ (ω) χ(t) t Fourier Fourier ω ω = ω + iω t χ(t) = χ(ω + iω ) = χ(t)e iω t e ω t (5.3) e ω t ω (ω > ) (ω ) ω C C χ(ω) ω ω dω = (5.31) 4 + ω δ R R ω +δ χ(ω ) dω + ω ω χ(ω ) dω + ω ω π π χ(ω + δe iθ ) δie iθ dθ δe iθ χ(re iθ ) Re iθ Rie iθ dθ = (5.32) R δ 1 3 ω ( ) 4 χ(ω) χ(ω ) P dω iπχ(ω ω ) = (5.33) ω 55

5.1: ω χ (ω ) + iχ (ω ) = i π P χ (ω ) + iχ (ω ) ω ω dω (5.34) Kramers-Krönig χ (ω ) = 1 π P χ (ω ) dω, ω ω (5.35) χ (ω ) = 1 π P χ (ω ) dω. ω ω (5.36) [ ] ( ) dm = 1 τ (M M eq χh) (5.37) M eq χh τ ( ) ω Fourier iωm(ω) = 1 τ M(ω) + χ h(ω) (5.38) τ χ(ω) = M(ω) h(ω) = χ 1 iωτ (5.39) χ 1 (ω) = χ χ ωτ (ω) = χ (5.4) 1 + (ωτ) 2 1 + (ωτ) 2 56

Χ Ω Χ 1..8.6.4.2 Χ Ω Χ 4 2 2 1 1 2 Ω Ω 4 2 2 4.2 ΩΤ 2 (a).4 (b) 4 5.2: : (a) (b) ( 5.2(a)) Kramers-Krönig (5.39) ω χ(ω) ω = i/τ m d2 x 2 dx = kx γ + ee (5.41) γ ω Fourier ω = k/m ω 2 x(ω) = ωx(ω) 2 + i γ m ωx(ω) + e E(ω) (5.42) m p = ex Fourier p(ω) ω 2 p(ω) = ωp(ω) 2 + iγωp(ω) + e2 E(ω) (5.43) m (γ = eγ /m) p(ω) p(ω) = 1 e 2 E(ω) (5.44) ω 2 ω 2 iγω m ( ϵ(ω) ) χ(ω) = p(ω) E(ω) = 1 e 2 ω 2 ω 2 iγω m (5.45) χ (ω 2 ω 2 )ω 2 (ω) = χ (5.46) (ω 2 ω 2 ) 2 + (γω) 2 χ γωω 2 (ω) = χ (5.47) (ω 2 ω 2 ) 2 + (γω) 2 ( 5.2(b)) χ = e2 mω 2 = e2 k (5.48) 57

χ(ω = ) ω (5.45) χ(ω) = ω ( ω 2 γ2 4 1 ) 1/2 i γ ( ω + 2 ω 2 γ2 4 e 2 ) 1/2 i γ m 2 (5.49) ω χ(ω) ±ω 5.2 Brown Brown 1827 Robert Brown Brown Gouy(1888 ) Exner(19 ) Exner 5.2.1 Einstein Brown Brown 195 Albert Einstein ( Einstein Brown 3 ) [Einstein ] Einstein Boltzmann n(x) = n e mgz/k BT (5.5) m a ρ c ρ l m = (4π/3)a 3 (ρ c ρ l ) F = mg v D j drift = nv D v D = µf µ D j diffusion = D n (5.5) j drift + j diffusion = µf n D n z = (5.51) 58

µf D = 1 n n z = F k B T (5.52) D = k B T µ (5.53) Einstein η Stokes µ = 1/6πηa D = k BT 6πηa = RT N A 1 6πηa (5.54) Einstein-Stokes (R N A Avogadro R/N A = k B Boltzmann Avogadro ) D η (5.53) [ ] 1 n(x, t) τ τ x l p τ (l) l p τ (l) = p τ ( l) n(x, t) n(x, t + τ) = n n(x, t) + n t τ = n(x, t) n(x l, t)p τ (l)dl (5.55) p τ (l)dl n lp τ (l)dl + 2 n l 2 x x 2 2 p τ(l)dl + (5.56). p τ dl = 1 n(x, t) n t = D 2 n x. (5.57) 2 D p τ (l) 2 D = 1 τ l 2 2 p τ(l)dl. (5.58) t = x = N t (5.57) n(x, ) = Nδ(x) (5.59) n(x, t) = Ne x2 /4Dt 4πDt (5.6) 59

Gauss D p τ (l) x σ x = x 2 = 1 x 2 n(x, t)dx = 2Dt (5.61) N 3 3 (5.54) σ x = t RT N A 1 3πηa (5.62) Einstein 1 6 Avogadro N A 198 Perrin ( Jean Baptiste Perrin, 187-1942) Brown Avogadro Perrin 1926 Nobel Brown 1 m = ρ(π/6)d 3 = 1.2.52 1 12 = 6.3 1 11 g ( ρ = 1.2g cm 3 ) 1 3k B T/2 6.2 1 14 erg Brown v 2 = 3k B T/m =.4cm/s 1 1 1 5 cm m/s 1 1 1 τ r mµ = 2ρa 2 /9η 2 1.2.25 1 8 /(9.135) = 5 1 8 s 5.2.2 : Langevin Brown (random force) Langevin Perrin Langevin ( Paul Langevin, 1872-1946) Langevin Einstein [1 Langevin ] 1 Brown R(t) Langevin m dv = v + R(t) (5.63) µ R(t) = (5.64) R(t)R(t ) = 2D R δ(t t ) (5.65) 6

(5.65) τ c γ = 1/mµ dv = γv + R(t) m (5.66) (5.66) v(t) = v()e γt + 1 m 1 v(t) = 1 m e γ(t t ) R(t ) (5.67) e γ(t t ) R(t ) (5.68) R(t) = v(t) = v(t)v(t ) = 1 m 2 1 t > t (5.65) 2 e γ(t+t ) e γ(t 1+t 2 ) R(t 1 )R(t 2 ) (5.69) v(t)v(t ) = 1 m 2 1 e γ(t+t ) e 2γt 1 2D R = e γ(t t) D R m 2 γ C vv ( t t ) = v(t)v(t ) = e γ t t D R m 2 γ (5.7) (5.71) C vv τ v = 1/γ D R /m 2 γ = k B T/m v(t)v(t) = k BT m D R = mγk B T = k BT µ (5.72) (5.73) D R mγ = 1/µ 2 [ ] (5.67) ( 5.3(a)) x(t) = x() + v() 1 e γt γ = x() + v() 1 e γt γ = x() + v() 1 e γt γ + 1 m + 1 m + 1 m e γ(t t ) R(t ) t e γ(t t ) R(t ) 1 ) e γ(t t R(t ) (5.74) γ 61

(x(t) x()) 2 = v() 2 (1 e γt ) 2 5.3: γ 2 + 1 m 2 1 2 1 e γ(t t 1) γ = v() 2 1 2e γt + e 2γt γ 2 = v() 2 1 2e γt + e 2γt γ 2 + 2D R m 2 γ 2 1 e γ(t t 2) R(t 1 )R(t 2 ) γ + 2D [ R t 2(1 e γt ) + (1 ] e 2γt ) m 2 γ 2 γ 2γ (5.72) (5.73) (x(t) x()) 2 = k ( BT 1 2e γt + e 2γt) + 2k BT mγ 2 mγ γt 1 [ 1 ( 1 e γ(t t 1 ) ) 2 t 2(1 e γt ) γ (5.75) + (1 ] e 2γt ) 2γ = 2k BT mγ 2 ( γt + e γt 1 ) (5.76) (x(t) x()) 2 2k BT mγ 2 1 2 γ2 t 2 = 2 kb T m t γt 1 (x(t) x()) 2 2k BT mγ (5.61) (5.77) t. (5.78) D = k BT mγ = µk BT (5.79) 62

Einstein 5.2.3 Langevin Langevin ( ) γv [Langevin ] N ϕ i (i = 1, 2,, N) dϕ i = G i({ϕ j }) + η i (t) (5.8) ϕ i G i F ({ϕ j }) F/ ϕ j G i ({ϕ l }) = j Γ ij F ({ϕ l }) ϕ j (5.81) Γ ij ϕ ϕ ( mobility) Γ ij = Γδ ij dϕ i = Γ F ({ϕ l}) ϕ i + η i (t) (5.82) [ ] t = N t G = N ϕ(t) ϕ() = η(n) t (5.83) n=1 η η(n) = (5.84) (ϕ(t) ϕ()) 2 = η(m)η(n) ( t) 2 m n = η(n) 2 ( t) 2 n = η 2 N( t) 2 (5.85) t N = t/ t ( t τ c ) η 2 = 2D η t (5.86) 63

(2 ) η(m)η(n) = 2D η δ mn t (5.87) t η(t)η(t ) = 2D η δ(t t ) (5.88) η i (m)η j (n) = η i η j δ mn = 2D η δ mn ij t (5.89) t η i (t)η j (t ) = η i η j δ(t t ) = 2D η ijδ(t t ) (5.9) D η ij ϕ Γ ij Γ ij = Γδ ij D η = k B T Γ (5.91) Brown Γ = γ/m D η = D R /m 2 D R = mγk B T 64