III,..

Similar documents
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

eto-vol2.prepri.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

TOP URL 1

TOP URL 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( )

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


量子力学 問題

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

TOP URL 1

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

all.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

LLG-R8.Nisus.pdf

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Gmech08.dvi

SPring-8ワークショップ_リガク伊藤

弾性定数の対称性について


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

QMII_10.dvi

Part () () Γ Part ,

phs.dvi

meiji_resume_1.PDF

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


Note.tex 2008/09/19( )

DVIOUT-fujin


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

振動と波動


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

物性基礎

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

all.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

main.dvi

1

Gmech08.dvi

all.dvi

1

30

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

eto-vol1.dvi


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

量子力学A

chap03.dvi



基礎数学I

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

keisoku01.dvi

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

85 4

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

高等学校学習指導要領

高等学校学習指導要領

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Transcription:

III,..

7.1, :. j I (= ) : [Ω, Ω + dω] dw dω = sin θ dθ dφ dw j I [1/s] [1/s m 2 ] = dσ [m2 ]. dσ dω [m2 ] :., σ tot = dσ = dω dσ dω [m2 ] :.

2.4 章では非定常状態の摂動論を用いて 入射平面波 eik x 摂動 ON 入射平面波 + 散乱平面波 X k0 0 ck0 eik x における振幅 ck0 (t) を計算し, Z dw = 黄金律 ' ck0 2 t 微小立体角 2π dω ρ(²k) hk0 V ki 2 h 微分断面積を計算した. dk0 7 章では 入射平面波 + 散乱波 からなる定常状態として考え, より厳密に考察する.

7.2 Schödinge : 2 ϕ(x) = 2mɛ h 2 ϕ(x). 2 = x 2 + 2 y + 2 z ϕ(x) = X(x)Y (y)z(z) e ikxx e ikyy e ikzz = e ik x, k 2 = 2mɛ h 2. ϕ(x) = k a k eik x. : 2 2 = 1 2 1 2L2 (θ, φ) ϕ(x) = R()Θ(θ)Φ(φ) = χ() Yl m (θ, φ). L 2 Yl m (θ, φ) = l(l + 1) Y m l (θ, φ), ( 1 2 ) l(l + 1) χ() 2 2 = 2mɛ h 2 χ().

( 2 l(l + 1) 2 2 ) l(l+1) 2 1 k ( 2 2 l(l+1) ) 2 χ() = k 2 χ() 1. χ() 0 χ() l+1 l. 1 2 k 2χ() k2 χ() l χ() e ik e ik., : Bessel χ() = j l (k) l 1 sin ( k l 2 π) n l (k) l 1 1 cos ( k l 2 π) ( 0) ( ) Yl m : ϕ(x)= (A lm j l (k) + B lm n l (k)) Yl m (θ, φ) l,m ( A e ik lm + B e ik ) lm Yl m (θ, φ). ( 1 k ) l,m

Bessel R() = χ() = j l (k) l 1 sin ( k l 2 π) n l (k) l 1 1 cos ( k l 2 π) ( ) 2 l(l + 1) 2 2 χ() = k 2 χ(). (ρ k) j 0 (ρ) = sin ρ ρ, j sin ρ ρ cos ρ 1(ρ) = ρ 2, n 0 (ρ) = cos ρ ρ, n cos ρ ρ sin ρ 1(ρ) = ρ 2,

7.3,. : z e ikz : ( ) e ik l,m A lm Y l m (θ, φ) f(θ, φ)eik z φ f(θ) eik ϕ(x) e ikz + f(θ) eik

ϕ(x) e ikz + f(θ) eik z j I = h ( (e ikz ) ) 2im z (eikz ) = hk m. (θ, φ) j = h ( ) ( ) f(θ) eik f(θ) eik 2im = hk f(θ) 2 m 2. = ds = 2 dω dw = j ds = hk m f(θ) 2 dω. f(θ) : dσ = dw σ tot = j I = f(θ) 2 dω, f(θ) 2 dω.

7.4 j j = h 2im ( ϕ ϕ ϕ ϕ ) = h m Im ( ϕ ϕ ) = e x x + e y y + e z z 1 = e + e θ ( ) + e 1 φ ( ) ϕ(x) e ikz + f(θ) eik ϕ j e z ik e ikz + e ik eik f(θ) +, hk m e z + hk f(θ) 2 m 2 e + hk ( f(θ) m (e z + e ) Re = j I + j + j int. ) eik e ikz +

0 0 = ds j = ds j I + ds j I + ds j + ds j int 0 + σ tot + Re = 2π Re 1 1 2 dω e (e z + e ) f(θ) eik( z). dτ (τ + 1)f(τ)eik(1 τ) cos θ { τ < 1 0 1 2π Re (1 + 1)f(τ = 1) dτ e ik(1 τ)} = 4π Re ( f(0) 1 ) ik = 4π k Imf(0). σ tot = 4π k Im f(0) =

7.5 Hamiltonian H = h2 2m 2 +V () = h2 2m (L 2, L z ) : ( 1 2 L2 2 2 [H, L 2 ] = 0 = [H, L z ] ) +V (), (l, m). (R() χ()/) ( 2 l(l + 1) 2 2 2m h 2 V () ) χ() = k 2 χ(). }{{} U()

Ã! 2 `(` + 1) 2 χ() U () χ() = k 2 2 自由粒子 U () = 0. χ() 原点で有界な解は j` 型のみ: = j`(k) µ `π sin k. 2 ( = 0 ( a) 短距離力 U (). 6= 0 ( < a) 原点に用いられない波動関数には n` 型が許される: χ( a) = A j`(k) + B n`(k) µ µ `π `π A sin k B cos k 2 2 A : B cos δ` : sin δ` µ `π sin k + δ`. 2 ポ テ ン シャル の 影 響 は, 遠方では自由球面波に 比 べ て の位 相 の ず れ δ` のみ.

1: V () = { 0 ( a) ( < a) 2: 0! = R(a) = A j l (ka) + B n l (ka) tan δ l = B A = j l(ka) n l (ka). V () = { 0 ( a) V 0 ( < a) R(a) = j l (Ka)! = A j l (ka) + B n l (ka) R (a) = K j l (Ka) =! A k j l (ka) + B k n l (ka) ( ) ( ) 1 ( ) A jl (ka) n = l (ka) jl (Ka) B j l (ka) n l (ka) K k j l (Ka) tan δ l = B A.

7.6 {Yl m } : x f(x) = R l () Yl m (θ, φ). l,m (1). e ikz = e ikcos θ = l l R l () Y 0 l (θ) a l j l (k) P l (cos θ) Taylo = i l (2l + 1) j l (k) P l (cos θ) l l i l (2l + 1) sin ( k lπ 2 k ) P l (cos θ). (2). eik f(θ). (3). δ l ) ϕ(x) l i l sin ( k lπ 2 (2l+1) A + δ l l k P l (cos θ).

e ik eik f(θ) = l=0 (1) + (2) = (3) A l = e iδ l. (2l + 1) eiδ l sin δ l P l (cos θ) k f(θ). : : dσ dω = f(θ) 2. σ tot = 4π k l 2 (2l + 1) sin2 δ l l = 4π k σ l. Im f(0). δ l

(cf. 1: ) k 0 sin δ 1,2,... 0, k sin δ 0 ( α : ). k l = 0 : f(θ) k 0 α, σ tot k 0 4πα 2. k 1/a l 1.

7.7 l σ l (k) = 4π(2l + 1) sin2 δ l (k) { 0 (l 1) k 0 4πα 2 (l = 0) k 0. ( sin δ l 1) δ l (k) = nπ k 0 Ramsaue δ l (k) = π 2 + nπ k 4π(2l + 1) R k 2 k 2

2:, l = 0 { 0 ( a) V () = V 0 ( < a) k = K = 2mɛ h 2m(V0 +ɛ) h 0 < a a χ() = C sin K + D cos K A sin k + B cos k C sin K = A sin(k + δ) χ(a) = C sin Ka A sin(ka + δ) χ (a) = CK cos Ka A k cos(ka + δ) : K cot Ka = k cot(ka + δ). k 0, δ \ 0 : K 0 cot K 0 a k cot δ, K 0 2mV0. h

: σ 0 (k) = 4π k 2 sin2 δ = 4π k 2 (cot 2 δ + 1) 4π (K 0 cot K 0 a) 2 + k 2. cot Ka = 0 Ka = 1 2 π, 3 2 π, k = 0. l = 1 k 2.

[1] : (I), (II) ( ). [2], : ( ). [3] : I, II ( ). [4], : I, II ( ).