housoku.dvi

Similar documents
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

all.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

( ) ( )

B ver B

phs.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

OHP.dvi


7-12.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx


OHP.dvi

~nabe/lecture/index.html 2

第10章 アイソパラメトリック要素

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

Gmech08.dvi

K E N Z OU

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


newmain.dvi

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

73

b3e2003.dvi

all.dvi

i

Part () () Γ Part ,

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

dvipsj.8449.dvi

構造と連続体の力学基礎


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

IA

II 1 II 2012 II Gauss-Bonnet II

: , 2.0, 3.0, 2.0, (%) ( 2.

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

untitled

??

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

7

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

TOP URL 1

Fr

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

Grushin 2MA16039T

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

Jacobson Prime Avoidance

all.dvi

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

meiji_resume_1.PDF


6.1 (P (P (P (P (P (P (, P (, P.

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

untitled

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1 Euclid Euclid Euclid

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

2

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

sec13.dvi


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

支持力計算法.PDF

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Report98.dvi

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

dynamics-solution2.dvi

i Γ



II 2 II

6.1 (P (P (P (P (P (P (, P (, P.101

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )


Transcription:

: 1 :, 2002 07 14 1 3 11 3 12 : 3 13 : 5 14 6 141 6 142 8 143 8 144 8 145 9 2 10 21 10

: 2 22 11 23 11 24 11 A : 12 B 14 C 15 ( ) ( ) ( ),, (,, ) 2,,

: 1 3 1 11 (t),, ρv 0 (1) t (t) ( A ) ( ) ρ (t) t +ρ v V 0 ρ t +ρ v 0 (2),, v ρ + (ρv) 0, (3), ρv 12 : : v(x)ρv t σ n (x)s + F b (x)v (4), v(x), v(x)ρv (5)

: 1 4 (4), F b (x), σ n (x) (Euler s first law of motion ) ρ v t V σ n (x)s + F b (x)v σ ij σ n (x) ij σ ij (x)e i (e j,n) ij σ ij (x)n j e i (6) ( : ) ρ v t V σ ij n j e i S + F b (x)v σ ij e i V + F b (x)v x j, ( ρ v i t σ ) ij F bi V 0 x j ρ v i t σ ij x j F bi 0 ρ v i t σ ij x j +F bi (7) (ρv i ) + x j (ρv i v j σ ij ) F bi (8)

: 1 5 13 : : jρv x σ n (x)s + x F b (x)v (9) t j, j x v(x)+s (10) s (nonpolar material), j x v(x) (11) (9) (Euler s first law of motion ) σ ij σ n (x) ij σ ij (x)e i (e j,n) ij σ ij (x)n j e i (12) ( : ), j i ρv t ǫ ijk x j σ kl n l S + ǫ ijk ǫ ijk x j F bk V, Gauss j i t ρv (ǫ ijk x j σ kl )V + ǫ ijk x j F bk V, x l, j i t t (ǫ x j ijkx j v k +s i ) ǫ ijk t v v k k +ǫ ijk x j t + s i t v k ǫ ijk v j v k +ǫ ijk x j t + s i t ǫ v k ijkx j t + s i t

: 1 6 1 x l (ǫ ijk x j σ kl ) ǫ ijk x j x l σ kl +ǫ ijk x j σ kl x l ǫ ijk δ jl σ kl +ǫ ijk x j σ kl x l ǫ ijk σ kj +ǫ ijk x j σ kl x l ( ǫ ijk x j ρ v k t σ ) kl F bk V + ρ s i x l t V ǫ ijk σ kj V (4) (ρ s i t ǫ ijkσ kj )V 0 ρ s i t ǫ ijkσ kj 0 (13), ǫ ijk σ kj 0, (14), 14,,,, 141

: 1 7, ( ) 1 ρ t 2 v2 i +ε V σ ik v i n ks + F bi v i V q k n ks 1 ε, q i 2 Gauss ρ ( 1 t 2 v2 i )V +ε q k (v i σ ik )V + F bi v i V V x k x k ρ ( ) 1 t 2 v2 i +ε (v i σ ik )+F bi v i q k x k x k [ ( )] 1 ρ 2 v2 i +ε + [ ( ) ] 1 ρ x k 2 v2 i +ε v k σ ik v i +q k F bi v i (15), Φ F b ρ Φ, (16) 1, F i v i ρ Φ v i ρ Φ x i t (ρφ) (ρφv) 1 2 q T, q ra,, qi T T κ ij x j 2, 1,?

: 1 8 e tot + (e tot v k v i σ ik +q k ) 0, (17) x k ( ) 1 e tot ρ 2 v2 i +ε+φ (18) e tot, F k e tot v k v i σ ik +q k,,, 142 (15), (7) ρv i i ( 1 2 ρv2 i ) + { ( } 1 v i v k x k 2 ρv2 i ) v i σ ik F bi v i σ ik (19) x k 143 (19) (15) (ρε)+ (ρεv) σ v i ik q (20) x k 144 (20) h h ε+ p ρ (20) (ρε)+ (ρεv) { ( ρ h p )} { ( + ρ h p ) } v ρ ρ

: 1 9 p (ρh) + (ρhv) (pv) p (ρh)+ (ρhv) t p v t (ρh)+ (ρhv) v i σ ik q + p x k t (21) σ ik σ ik+pδ ik pδ ik 145 s ε Ts+ p ρ2ρ (20), ( ) (ρε)+ (ρεv) ρ +v ε ( ) ρt +v s+ p ( ) +v ρ ρ ( ) ρt +v s p v ( ) ρt +v s σ v i ik q (22) x k ( ) (22) ρt +v s, 1 σ ik v i, x k 2 (3), (7), (15) 5, 5 ( + 3 + ), ( ) :, :

: 2 10 2 21 A, A(x,t)V F ns + Q[A](x, t)v, n F A (flux ensity), A Q[A] A (source, sink), Gauss ( ) A + F V Q[A]V A + F Q[A] (23), F Av, F A + (Av +F ) Q[A] (24)

: 2 11 22 A, ( ) ρ, F ρv, Q[ρ] 0, ρ + (ρv) 0 (25) 23 A i ρv i,,,, (F i ) k Π ik ρv i v k σ ik, Q[ρv i ] ρ Φ x i,, (ρv i)+ x k (ρv i v k σ ik ) ρ Φ x i (26) 24 ) A 1 e tot ρ( 2 v2 +ε+φ, F i σ ijv j +q i, Q[e tot ] 0 0, e tot + x i (e tot v i σ ij v j +q i ) 0 (27)

: A : 12 A : A, A(x, t)v (28) t (x,t), (Reynols transport theorem) 2, x 1 ξ (ξ,η,ζ) t (x,t)a(x,t)v A(ξ,t) x t ξ ξ ξηζ, ξ ξ A(ξ,t) x t ξ ξ ξηζ ξ ( A(ξ,t) x ) t ξ ξηζ, Lagrange x ξ,t ξ ξ (x,t) (x,t) ( A(ξ,t) x ) t ξ ξηζ A(ξ, t) x t ξ ξηζ + A(ξ,t) ξ t (x,t) + (x,t) (x,t) (x,t) A(x, t) xyz + t A(x, t) xyz + t A t xyz ( (ẋ,y,z) A(x, t) (ξ,η,ζ) ξ ( ) x ξηζ ξ ( (ẋ,y,z) A(ξ, t) (ξ,η,ζ) + (x,ẏ,z) (ξ,η,ζ) + (x,y,ż) ) ξηζ (ξ,η,ζ) ( (ẋ,y,z) A(x, t) (ξ,η,ζ) + (x,ẏ,z) (ξ,η,ζ) + (x,y,ż) (ξ,η,ζ) (x,t) ) ξ x xyz (ξ,η,ζ) (x,y,z) + (x,ẏ,z) (ξ,η,ζ) (ξ,η,ζ) (x,y,z) + (x,y,ż) ) (ξ,η,ζ) xyz (ξ,η,ζ) (x,y,z) ( A t xyz + vx A (x,t) x + v y y + v ) z xyz z ( ) A t +A v xyz 2 1, t t 0

: A : 13 (6) ( ) A A(x,t)V t (x,t) (x,t) t +A v V (29) (Reynols transport theorem) (29) A(x, t)v t (x,t) (x,t) (x,t) (x,t) ( ) A t +A v V { } A + (Av) V A V + Av ns (x,t) (Libniz rule) s, A ρs ρs(x, t)v t (x,t) (x,t) { (x,t) (x,t) ( ) (ρs) +ρs v V t ( ) ρ s t +ρ v ρ s t V +ρ s } V t

: B 14 B Batchelor,GK, :,, 614pp Lanau,L, Lifshitz,EM,, 1970 : 1,, 280pp, 1973 : ( ),, 428pp Glansorff,P,Prigogine,I,,, 1977 :, 297pp, 1998 :,, 538pp

: C 15 C 1989 1993, (1989-04-21), (1990-04-23), / : (1996-04-23) http://wwwgf-ennouorg/library/rironn/renzoku/housoku/pub/, ( ) ( ), c (Y-Y Hayashi an S Takehiro) 1989-2014