(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Similar documents
( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

TOP URL 1

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

pdf

main.dvi

1 2 2 (Dielecrics) Maxwell ( ) D H

,,..,. 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

05Mar2001_tune.dvi

TOP URL 1

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

A

Part () () Γ Part ,

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

Microsoft Word - 11問題表紙(選択).docx

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Note.tex 2008/09/19( )

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

( ) ,

untitled

IA

untitled


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


GJG160842_O.QXD

( )

TOP URL 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

量子力学A

SO(2)

QMII_10.dvi

Untitled

量子力学 問題

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

DVIOUT-fujin

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

all.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1

ohpr.dvi

C: PC H19 A5 2.BUN Ohm s law

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

The Physics of Atmospheres CAPTER :

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

gr09.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

抄録/抄録1    (1)V


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)


untitled

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

30


25 3 4

( ( 3 ( ( 6 (

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Undulator.dvi

Mott散乱によるParity対称性の破れを検証


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

untitled

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

本文/目次(裏白)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

meiji_resume_1.PDF

untitled

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Gmech08.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E


Transcription:

1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0 0 0 1 1 L L µ e + ν e + ν µ 1 1 1 1 µ 1 0 0 1 e 0 1 1 0 * 1) * 2) SU(3) µ e + ν e + ν µ (2.2)

2 2 2.1 µ eγ µ e + γ < 1.2 10 11 (2.3) ν e ν µ π π π + µ + + ν µ 2.1: µ eγ ( 2.2(b)) ν µ (ν e )( 2.2(a) ) ( 2.2(c)(d)) 1962 2.2: (a) d (b) π + u d W + µ + ν µ (c)(d)(e) ν e,ν µ,ν τ ( ) e + e + τ + τ + (2.4a) e + ν e + ν τ τ (2.4b) µ+ ν µ + ν τ ν τ ν τ ν e (ν µ ) τ e(µ) + γ ν e (ν µ ) µ eγ, τ µγ e + X µ+y ( )

2 3 Z e + e + Z {(q i + q i ) + (l i + l + i ) + (ν i + ν i )} (2.5) i Z 2m i m Z * 3) BR = Γ(Z ) Γ(Z all) (2.6) e e + E(e e + ) = m z σ(e e + hadrons) = σ(e e + Z)BR(Z hadrons) (2.7) ( 2.3) N ν = 2.994 ± 0.012 (2.8) 2.3: e + e + Z N ν =3,4,5 m z /2 ( ) T D ( ) Ω B (= ρ B /ρ c, ρ c = 3H0 2 /8πG) D/H Ω B 2.4 D/H WMAP Ω B N ν WMAP ( 2.4 ) D/H = 2.6 ± 0.4, Y = 0.238 ± 0.005 N ν = 1.7 3.0 (2σ ) * 4) * 3) m Z = 91GeV,m top = 185GeV m u 3MeV,m s 6MeV,m s 120MeV,m c 1.3GeV,m b 4.2GeV m e 0.51MeV,m µ = 105.7MeV,m τ 1777MeV * 4) V.Barger et al., Phys. Lett. B566 (2003) 8-18 hep-ph/0305075

2 4 2.4: (G.Steigman; Neutrino06) D/H Y(He) 2σ WMAP N ν N ν = 2.75 2.2 (1930) 30 (1956) ν e + p (e + +W ) + p e + + n (2.9a) e + + e γ + γ (2.9b) n +Cd Cd Cd + (3 4) γ s W e + W p( u ) (d ) 2m e 3-4 10 4 1m ( ) ( ) 2.5 1kW 2 10 14 10 13 /sec/cm 2 100 ( ) 20

2 5 2.5: Reines-Cowan(1954) γ (Cd) 2.3 2.3.1 d(p d ) u(p u ) + e (p e ) + ν e (p ν ) (2.10) ( ) Z H f i =< f H (x)d 4 x i > = G Z β 2 G β = G F cosθ C d 4 xe i(p e+p ν )x < f u(x)γ µ (1 γ 5 )d(x) i > [u(p e )γ µ (1 γ 5 )v(p ν )] (2.11a) (2.11b) d u < u j µ (x) d > u(p u )γ µ (1 γ 5 )d(p d )e i(p d p u )x (2.12) (= E) u(p u )γ µ u(p d ) δ µ0, u(p u )γ µ γ 5 u(p d ) (0,σ) (2.13a) MeV/c 1/p 100 10 13 m 10 14 m (p e + p ν )x 1 e i(p e+p ν )x 1 Z Z < 1τ + >= d 3 xφ f (x)1τ + Φ i (x), < στ + >= d 3 xφ f (x)στ + Φ i (x), (2.14) τ ± n p eν 1 J = 0, J = 0,±1

2 6 H f i H fi 2 (2.14) dγ = G2 β 2π M 3 2 F(Z,E)p e E e p ν E ν de e (2.15a) p ν E ν = (E 0 E e ) (E 0 E e ) 2 m 2 ν, E 0 = M(Z,A) M(Z + 1,A) m ν = E e,max (2.15b) M 2 = < 1 > 2 + C GT 2 < σ > 2 (2.15c) F(Z,E) [ ] dγ/de 1/2 e K(E) = (2.16) F(Z,E)p e E e m ν = 0 K(E) E 0 E e ( 2.6) m ν 0 2.6: ( ) m ν 0 ( ) (σ) (1) E 0 m ν E 0 ( 3 H, E 0 = 18KeV ) E e = E 0 E 0 E e > E 0 ε = R E0 E 0 E2 (E 0 E) 2 ( ) de 3 R E0 0 E 2 (E 0 E) 2 de = 10 (2.17) E 0

2 7 = 1eV ε 2 10 13 m ν 2.7: ) (2) E E 2.7 R OP (E) E EL(E) BS(E) N(E ) Z N(E) obs = N(E )R(E,E )de (2.18) ( 2.6 (3) V p ν E ν = P i (E 0 V i E e ) i (E 0 V i E e ) 2 m 2 ν) (2.19) P i i * 5) 2.8 p/p = 0.02%( E = 8eV ) E 0 1600eV m ν = 0 m ν < 13eV KATRIN KATRIN 2.9 * 6) * 7) * 8) 10 m ν < 0.23eV (MAC-EF=Magnetic Adiabatic Collimator with Electrostatic Field) 2.10 B s B D B min ( ) ( 2π) E T = µ B, µ = E T B = (2.20) * 5) Phys. Lett. B187(1987)198-204 * 6) http://www-ik.fzk.de/ katrin/index.html * 7) Phys. Lett. B460 (1999) 219 * 8) Phys. Lett. B460 (1999)227-235

2 8 2.8: m ν = 0 m ν < 13eV 2.9: ATRIN: m ν < 0.2eV

2 9 2.10: KATRIN ( µ ) (E T ) min = µb min (2.21) E 0 > E e > E 0 (E T ) min E (E T ) min = E e B min 18KeV 3 10 4 T B max 6T m ν < 0.23eV 1eV (2.22) 2.10 (2006) m ν < 2.3eV 2.3.2 π + (p) µ + (q) + ν µ (k) (2.23) π m π = q 2 + m 2 µ + k 2 + m 2 ν, k = k = q = q (2.24a)

2 10 2.11: m ν < 2.3eV 90%CL q m π = 139.56995 ± 0.00035MeV m µ = 105.658389 ± 0.000034MeV m 2 ν = 0.016 ± 0.023 (2.25a) q = 29.79200 ± 0.00011MeV m νµ < 0.17MeV (90%CL) (2.25b) * 9) e e + π + e + e + τ + τ m 2 ν = E(ν) 2 p(ν) 2 = (m τ i τ ± π ± + π + + π + ν τ E(π i )) 2 ( p(π i )) 2, E(π i ) = i p(π i ) 2 + m 2 π (2.26a) (2.26b) (2.26c) m τ = 1777 +0.30 0.27 MeV m ν τ < 18.2MeV (95%CL) (2.27) m νi 0.3 1eV (2.28) i * 9) K.AssamaganPhys. Rev. D53(1996) 6065

2 11 Ω ν < 0.015 (95%CL) Ω ν 2.12: ( ) ( ) (m) m m 2 23 = m 2 3 m 2 2 2.6 10 3 (2.29a) m 2 12 = m 2 2 m 2 1 8 10 5 (2.29b) m 2 23 m 1 < m 2 < m 3 (normal hierarchy) m 3 < m 1 < m 2 (Inverted hierarchy) m ( ) m 2 i j Max{m i 2,m 2 j } m ev 1eV m 1 << m 2 << m 3 m ν3 0.05eV, m ν2 0.01eV (2.30)

2 12 2.4 π π + µ + + ν µ, π + e + + ν e (2.31) π π π π µ + (e + ) ( 2.13 µ + (e + ) 1 v m 2 /p 2 π 2.13: π µ + µ Γ(π µ + ν) m 2 (m 2 π m 2 µ) 2 µ m 5 π (2.32) Γ(π e + ν) Γ(π µ + ν) = m2 e(m 2 π m 2 e) 2 m 2 µ(m 2 π m 2 µ) 2 = 1.284 10 4 (2.33) 1.233 10 4 1.218 ± 0.014 10 4 µ eν * 10) ν e ν µ 2.14: π π ( ) * 10)

2 13 ( ) ( 2.14 ) (H = µ H) ( ( 2.14 ) 2.15 43MeV 2.15: #1, #2 #3( ) #4 #4 #3 #4 (Phys.Rev.Lett.7(1961)23) 10 ( ) (4) 3 10 P y A = L R L + R = ±0.09, f or P y = 1 (2.34) A = 0.09 ± 0.031 P y = 0.9 µ 100% 2.5 * 11) 2ν 0ν ( 2.16(a),(b)) * 11)

2 14 2ν : (Z) (Z + 2) + 2e + 2 ν e (2.35a) 0ν : (Z) (Z + 2) + 2e (2.35b) 2ν 2.16: 2 (a)2ν (b)0ν (3) 0ν 2.16(b) (1) ν L (ν c ) R (2) (m ν /m e ) 2 ) 2.17: (a)2ν (b)0ν (c) 1.29kg y. 90%CL 0ν 2ν ( 2.17 ) 10 18 10 24 ( ) 100%

2 15 2.17( ) 0ν 180 NEMO3 * 12) 2.18 2.19 2.18: NEMO3 : ββ 10kg 20m 2 (40 60)mg/cm 2 10 (6180) σ i = 0.5mm, σ z = 1cm, 1940 PM.,FWHM(1MeV ) 11 14.5% (30G) (20cm)+ (30cm H 2 O) / τ 10 24 y/m ν 0.1eV 2ν * 13) 100 Mo 100 Ru + 2e + 2 ν e τ 1/2 = 7.1 ± 0.4 10 18 (2.36a) 76 Ge 76 Se + 2e + 2 ν e τ 1/2 = 1.5 ± 0.1 10 21 (2.36b) 0ν (Ge) τ 0ν > 1.9 10 25 (2.37) m ν < 1eV (2.38) * 12) http://nemo.in2p3.fr/ * 13) A.S.Barabash Neutrino2006, SantaFe

2 16 2.19: NEMO3 2ν 2ν 0ν 180 m j < m ν >= j Ue 2 jm j = η j U e j 2 m j (2.39) j η j CP < m ν >