<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Similar documents
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

gr09.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

Note.tex 2008/09/19( )

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

2000年度『数学展望 I』講義録

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Untitled

Gmech08.dvi

all.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

The Physics of Atmospheres CAPTER :

I II III IV V

1 c Koichi Suga, ISBN

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

pdf

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

TOP URL 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Gmech08.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

( ) ( )

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

K E N Z OU

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


構造と連続体の力学基礎

TOP URL 1

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Acrobat Distiller, Job 128

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x




() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

I ( ) 2019

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1


n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Korteweg-de Vries

keisoku01.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

untitled

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

A

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

NETES No.CG V

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

85 4

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

newmain.dvi


Transcription:

高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです.

i 20 1999 3 2 2010 5

ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5 15 2.6 18 2.7 22 2.8 2 25 26 3 28 3.1 28 3.2 31 3.3 33 3.4 37 41 4 43 4.1 43 4.2 46 4.3 54 4.4 61

iii 67 5 70 5.1 70 5.2 74 5.3 77 5.4 79 5.5 85 90 6 93 6.1 1 93 6.2 93 6.3 103 107 7 2 109 7.1 109 7.2 115 7.3 116 7.4 123 133 8 135 8.1 135 8.2 136 8.3 140 8.4 142 8.5 144 8.6 150 152 9 154 9.1 154

iv 9.2 158 9.3 161 9.4 2 162 166 10 169 10.1 169 10.2 170 10.3 172 10.4 174 10.5 176 179 181 211 213 S E s, e

1 1 1903 Wilbur Wright, 1867 1912 Orville Wright, 1871 1948 2 1 1 5 6 150 [m/s] 900 [km/h] 250 [m/s] 1 50 300 [m/s] 0.83 1.1 1.1.1 p τ

2 1 τ = 1 v dv dp (1.1) v 1 τ (1.1) v ρ (1.1) τ = 1 dρ ρ dp (1.2) 1.1.2 Isaac Newton, 1642 1727 1687 Principia 6 1 2.6 Pierre-Simon Laplace, 1749 1827 2.7 4.1 a p ρ ( ) p a = (1.3) ρ s s a a = γ p ρ = γrt (1.4) (4.16) γ c v c p 2.4 R T (1.4) γ 2 (1.2) (1.3) τ 1 δp v δv δv/v = (1/v)(dv/dp)δp (1.1) 2 a =331.2+0.61t [m/s] t [ ]

1.1 3 τ a a = 1 ρτ (1.5) (τ 0) a M u a M = u a (1.6) (1.5) M τ 1.1.3 ρ 0 ρ ρ/ρ 0 1.05 M =0.32 4 (4.40) 5% M =0.32 1 [1] (subsonic flow) (0 <M<1) M 1 M 1 [2] (transonic flow) (M 1) [3] (supersonic flow) (M >1) M>1 transsonic s transonic Theodore von Kármán, 1881 1963

4 1 [4] (hypersonic flow) (M 1) [2] [3] [4] 1.2 1.2.1 44 1947 10 14 (Mojave Desert) XS-1 50 (Captain Charles Yeager) B29 Bell XS-1 1.1 2.7 XLR-11 12,900 M =1.06 NACA (National Advisory Committee for Aeronautics) 23 M =0.85 1.1 Bell XS-1 1.2.2 1 [mm] G.F.B. Riemann 1858 2.6

1.2 5 2.7 2 2.8 William John Macquorn Rankine, 1820 1872 1870 Philosophical Transaction of the Royal Society Pierre Henry Hugoniot, 1851 1887 1887 Journal de l Ecole Polytechnique 5.2 2 Lord Rayleigh, 1842 1919 (Proceedings of the Royal Society, vol.84, 1910) 20 G.I. Taylor, 1886 1975 1 Proceedings of the Royal Society Ernst Mach, 1838 1916 1887 1.2 Carl G.P. de Laval, 1845 1915 1888 4.4

43 4 (3.38), (3.39) ρ + (ρu) = 0 t (4.1) ( ) u ρ t + u u = p (4.2) (3.40) 2 ρ t + u ρ x + v ρ y + w ρ ( u z + ρ x + v y + w ) =0 (4.3) z Du Dt = u t + u u x + v u y + w u z = 1 p ρ x Dv Dt = v t + u v x + v v y + w v z = 1 p ρ y Dw Dt = w t + u w x + v w y + w w z = 1 p ρ z (4.4) (4.5) (4.6) 4.1

44 4 4.1.1 u =0, p = p, 0 ρ = ρ 0 u 1, p 1, ρ 1 u 1 1, p 1 /p 0 1, ρ 1 /ρ 0 1 u = u 1, p = p 0 + p 1, ρ = ρ 0 + ρ 1 (2.51) (p 0 + p 1 )(ρ 0 + ρ 1 ) γ = p 0 ρ γ 0 ( 1+ p )( 1 1+ ρ ) γ ( 1 1+ p )( 1 1 γρ ) 1 + =1 p 0 ρ 0 p 0 ρ 0 p 1 /p 0 ρ 1 /ρ 0 p 1 p 0 = γρ 1 ρ 0 (4.7) γp0 a 0 ρ 0 (4.8) (4.7) p 1 = a 2 0ρ 1 (4.9) (4.1) (4.2) t (ρ 0 + ρ 1 )+ {(ρ 0 + ρ 1 )u 1 } =0, ( ) u1 (ρ 0 + ρ 1 ) + u 1 u 1 = (p 0 + p 1 ) t

4.1 45 ρ 1 t + ρ 0 u 1 = 0 (4.10) ρ 0 u 1 t = p 1 (4.11) (4.10) t 2 ρ 1 t 2 + ρ 0 ( ) u1 =0 t (4.11) ρ 0 ( ) u1 + 2 p 1 =0 t u 1 2 ρ 1 t 2 = 2 p 1 (4.9) p 1 2 ρ 1 t 2 = a2 0 2 ρ 1 (4.12) (4.12) 1 2 ρ 1 t 2 = 2 ρ 1 a2 0 x 2 (4.13) ρ 1 = f(x a 0 t)+g(x + a 0 t) (4.14) 3.2 ρ 1 t =0 f(x) g(x) ±a 0 a 0 (4.8) a 0 (2.51) ( p/ ρ) p=p0,ρ=ρ 0 a = ( ) p ρ s (4.15)

46 4 (2.51) (2.4) a 2 = γp ρ = γrt (4.16) T 4.1.2 M u a (4.17) (M =1) M>1 : (supersonic) M<1 : (subsonic) 4.2 4.2.1 1 ( / t 0) 1 4.1 x x u u 4.1 1 (4.3) (4.6) y z v, w x u ρ p x

4.2 47 u dρ dx + ρdu dx = 0 (4.18) u du dx = 1 dp ρ dx dρ/dx 0 (4.18) d (ρu) =0 dx (4.19) x q = ρu (4.20) u = q/ρ (4.19) q d ρ dx ( ) q = q ( q ) dρ ρ ρ ρ 2 dx = 1 ρ ( ) 2 q dρ ρ dx (4.19) (2.10) ρ = Φ(p) (4.21) dp/dx =(dp/dρ)(dρ/dx) ( ) 2 q = dp ρ dρ (4.20) u 2 (4.15) a 2 u = a (4.22) u x a 4.2.2 1 1 x x (u) (ρu = )

48 4 4.2 (x, y, z) F (x) x y, z v, w x u y, z 1 4.2 (throat) U ρ R x ɛ x L = R /ɛ x = 1 L X = ɛ 1 R X, y = 1 R Y, z = 1 R Z y, z x (X, Y, Z) x 3 / X, / Y, / Z u, ρ, p X v, w X, Y, Z ɛ 1 u = U (u (0) (X)+ɛu (1) (X, Y, Z)+ɛ 2 u (2) (X, Y, Z)+ ) v = U (ɛv (1) (X, Y, Z)+ɛ 2 v (2) (X, Y, Z)+ ) w = U (ɛw (1) (X, Y, Z)+ɛ 2 w (2) (X, Y, Z)+ ) ρ = ρ (ρ (0) (X)+ɛρ (1) (X, Y, Z)+ɛ 2 ρ (2) (X, Y, Z)+ )

4.2 49 p = ρ U 2 (p (0) (X)+ɛp (1) (X, Y, zz)+ɛ 2 p (2) (X, Y, Z)+ ) (4.3) (4.6) ɛ 1 ɛ ( ) (0) ρ(0) u (0) u X + ρ(0) X + v(1) Y + w(1) =0 Z (0) u(0) u X = 1 p (0) ρ (0) X 0= 1 p (1) ρ (0) Y 0= 1 p (1) ρ (0) Z u ρ ( u x + ρ x + v y + w ) = 0 (4.23) z u u x = 1 p ρ x (4.24) p/ y = p/ z =0 1 1 (4.18), (4.19) (4.24) (4.23) (4.18) ρ v/ y + w/ z 4.2.3 1 1 (4.23), (4.24) F (x) x u(x) ρ(x) F (x) (4.21) (4.23) x x + Δx ΔV = FΔx u( ρ/ x) 1 ΔV u ρ ρ dv = u x x FΔx

109 7 2 5 6 1 2 7.1 7.1.1 (oblique shock) 7.1 (detached shock) θ β M 5 1 2 M 1 > 1 (4.50) (5.65) M 1 > 1 M 2 < 1 7.1

110 7 2 7.1.2 (5.43) (5.48) M 1 = U 1 /a 1 β M 1 1 (5.11) 2 (5.43) (5.48) (i =1) (i =2) U i u i v i 7.2 u 1 = U 1 sin β, v 1 = U 1 cos β u 2 = U 2 sin(β θ), v 2 = U 2 cos(β θ) u 2 v 2 =tan(β θ) (7.1) (5.11) v 2 = v 1 = U 1 cos β (7.2) M 2 M 2 2 = = ( U2 a 2 ( u2 a 2 ) 2 = ) 2 + ( u2 a 2 ( a1 a 2 ) 2 + ( v2 a 2 ) 2 = ( u2 a 2 ) 2 ( U1 cos β + a 2 ) 2 ) 2 M 2 1 cos 2 β (7.3) 7.2

7.1 111 (5.43), (5.44), (5.46), (5.47), (5.48) M 1 u 1 /a 1 =(U 1 sin β)/a 1 = M 1 sin β ρ 2 ρ 1 = 1 2 (γ +1)M 2 1 sin 2 β 1+ 1 2 (γ 1)M 2 1 sin2 β (7.4) p 2 p 1 = T 2 T 1 = a 2 a 1 = γm1 2 sin 2 β 1 (γ 1) 2 1 (7.5) 2 (γ +1) }{γm 21 sin 2 β 12 } (γ 1) { 1+ 1 2 (γ 1)M 2 1 sin 2 β { 1+ 1 2 (γ 1)M 2 1 sin2 β s 2 s 1 = R γ 1 ln 1 4 (γ +1)2 M 2 1 sin2 β } 1 { 2 γm1 2 sin2 β 1 } 1 2 (γ 1) 2 1 2 (γ +1)M 1 sin β γm1 2 sin2 β 1 (γ 1) 2 1 (γ +1) 2 (7.6) (7.7) 1+ 1 γ 2 (γ 1)M 1 2 sin2 β 1 2 (γ +1)M 1 2 sin2 β (7.8) M 1 sin β β π/2 (5.45) u 1+ 1 2 = 2 (γ 1)M 1 2 sin 2 β u 1 1 2 (γ +1)M 1 2 sin2 β (7.9) (7.4) (7.8) M 1 (7.3)

112 7 2 M 1 = U 1 a 1 (7.10) M 2 = U 2 /a 2 (5.36) (5.36) M 1 M 1 sin β ( u2 a 2 ) 2 1+ 1 = 2 (γ 1)M 1 2 sin 2 β γm1 2 sin2 β 1 (7.11) 2 (γ 1) (u 2 /a 2 ) 2 (7.3) (7.7), (7.11) { } 1 1+(γ 1)M 2 M2 2 1 sin 2 β + M1 4 4 (γ +1)2 γ sin 2 β sin 2 β = { 1+ 1 2 (γ 1)M 1 2 sin2 β }{γm 21 sin2 β 12 } (7.12) (γ 1) β = π/2 (5.36) β =sin 1 (1/M 1 ) M 2 = M 1 β (7.14) μ 7.1.3 θ β M 1 (7.1) v 2 = U 1 cos β, u 1 = U 1 sin β tan(β θ) = u 2 U 1 cos β = u 2 u 1 sin β cos β (7.9) 1 tan β tan θ 1+ 1+tanβtan θ = 2 (γ 1)M 1 2 sin 2 β 1 2 (γ +1)M 1 2 sin β cos β tan θ = 1+ (M1 2 sin 2 β 1) cot β { } 1 2 (γ +1) sin2 β M1 2

7.1 113 { M 2 =2cotβ 1 sin 2 } β 1 M1 2 (γ +cos2β)+2 (7.13) θ β M M 1 > 1 θ β 7.3 (7.13) 7.3 (a) β = π/2 β =sin 1 (1/M 1 ) θ =0 β =sin 1 (1/M 1 ) M 1 1 π/2 M 1 0 (b) M 1 > 1 θ θ max sin 1 (1/M 1 ) <β<π/2 (c) M 1 > 1 M 2 =1 β (7.12) (d) θ<θ max β M 1 > 1 M 2 < 1 β M 2 > 1 β 9.3 7.3 θ β M

114 7 2 7.1 M 1 θ max (7.13) tan θ =2cotβ ( sin 2 β 1/M 2 1 γ +cot2β +2/M 2 1 M 1 tan θ = sin 2β γ +cos2β β d(tan θ) dβ = 2(1 + γ cos 2β) (γ +cos2β) 2 =0 ) cos 2β = 1/γ = 5/7 sin 2β =2 6/7 tan θ max =5 6/12 = 1.0206 θ max 45.73 7.1.4 7.4(a) 7.4(b) 2 θ>θ max (7.13) β 7.5 9.3 7.4

7.2 115 θ 0 β sin 1 (1/M 1 )=μ 7.6 μ ρ 1 = ρ 2, p 1 = p 2, T 1 = T 2 μ 7.5 7.6 7.2 4 2 7.7 V t A A AA = Vt V < a t =0 V > a t =0 A B A C V > a AA μ 7.7 V

213 46 161 3 2, 38 1 1 11 10 56 11, 38 31 29 31 30 15 22 38 29 2, 45 46 161 28 1 48 74 4, 74 109 103 83 10 74 32 48 103 62 139 164 3 143 39 34 156 156 34 35 16 13 11, 13 178 3 3 32 33 4 32 45 2 18 57 61 173 46 3 55 14 13 90

214 30 20 38 96 31 32 35 109 32 15 33 2 25 10 13 32 12 1 4 2 13 14 31 11 164 29 10, 13 8, 152 86 121, 132 117 7 31, 70 32 50 34 109 113 34 20 10 7 169, 172 169 169, 172 169 17 11 26 116 116 1, 3, 5, 46 116 116 99 55 5, 62 75 5 75 10, 13 109 128 8, 59 178 176 47

1972 1974 1983 Ph.D. 1983 1985 1987 1989 1990 University College London 1990 1998 C 2010 2010 6 24 1 1 1 4 11 102 0071 03 3265 8341 FAX 03 3264 8709 http://www.morikita.co.jp/ / / / Printed in Japan ISBN978 4 627 67361 8