CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

Similar documents
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

DVIOUT

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)



v er.1/ c /(21)

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Untitled

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

mugensho.dvi

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

A

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

DE-resume

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

1

( ) ( )

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

i

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

6. Euler x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1


名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

Chap9.dvi

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D


sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

meiji_resume_1.PDF

Gmech08.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y


() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

曲面のパラメタ表示と接線ベクトル

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si



<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

応力とひずみ.ppt

( ) x y f(x, y) = ax


重力方向に基づくコントローラの向き決定方法

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

II 2 II

K E N Z OU

熊本県数学問題正解

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0


A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

入試の軌跡

Chap11.dvi

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

Transcription:

CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b (x,y) (a,b) P A. f(x, y) A(a, b) (a) f(a, b) (b) lim (x,y) (a,b) f(x, y) (c) lim (x,y) (a,b) f(x, y) = f(a, b) 1.. 1.1 1. f(x, y) f(x, y) = { xy x +y (x, y) (0, 0) 0 (x, y) = (0, 0) E-mail:hsuzuki@icu.ac.jp 1

x- y-0 y = mx x 0 lim f(x, mx) = lim x 0 x 0 mx x + m x = m f(0, 0). 1 + m m = 0 x (0, 0) 0 m = 1 y = x (0, 0) 1/ (0, 0) 1. f(p + h, q) f(p, q) f(p, q + h) f(p, q) 1. 1. lim, lim h 0 h h 0 h f(x, y) (p, q) x y (partial derivative) x (p, q) = f x(p, q) = D x f(p, q), y (p, q) = f y(p, q) = D y f(p, q). f(x, y) x = f x = D x f, y = f y = D y f f x f(x, y) y x y 1. 1. f(x, y) = x y + e x f x = xy + e x f y = x 1.3 1.3 1. (p, q) f(x, y) a, b ɛ(x, y) = f(x, y) f(p.q) a(x p) b(y q) lim (x,y) (p,q) ɛ(x, y) (x p) + (y q) = 0 f(x, y) (p, q) (a, b) (p, q)

. z f(p, q) = a(x p) + b(y q) (p, q, f(p, q)) 3. f(x, y) f(x, y) df = dx + x y dy 1.1 (1) f(x, y) (p, q) (a, b) = ( (p, q), (p, q)). x x () (p, q) f(x, y) f(x, y) (p, q) f(x, y) (p, q) 1.4 p 1 x 1 p x P =, X =.. p n x n f(x) f(x) P lim f(x) = f(p ). X P f(x) P A = (a 1,..., a n ) lim X P ɛ(x) = 0, ɛ(x) = f(x) f(p ) A (X P ). X P z f(p ) = (gradf)(p ) (X P ), gradf(p ) = ( x 1 (P ),..., x n (P )). 3

.1.1 f(x, y) x y t x = x(t) y = y(t) t f(x(t), y(t)) t df dt = dx x dt + dy y dt. t = p x(t) = x(p) + x (p)(t p) + ɛ(t) y(t) = y(p) + y (p)(t p) + ɛ (t) x(t) y(t) t t p ɛ(t) (t p) 0, ɛ (t) (t p) 0 f(x(t), y(t)) f(x(p), y(p)) = (x(p), y(p))(x(t) x(p)) + (x(p), y(p))(y(t) y(p)) + ɛ(x(t), y(t)) x y f(x, y) (x(t), y(t)) (x(p), y(p)) ɛ(x(t), y(t)) (x(t) x(p)) + (y(t) y(p)) 0 f(x(t), y(t)) f(x(p), y(p)) t p = x (x(p), y(p))(x (p) + ɛ(t) t p ) + y (x(p), y(p))(y (p) + ɛ (t) ɛ(x(t), y(t)) ) + t p t p ɛ(x(t), y(t)) lim t p t p ɛ(x(t), y(t)) = lim (x (p) + ɛ(t) t p (x(t) x(p)) + (y(t) y(p)) t p ) + (y (p) + ɛ (t) t p ) = 0 df (x(p), y(p)) = dt x (x(p), y(p))x (p) + y (x(p), y(p))y (p) 4

. f(x, y) x = x(u, v) y = y(u, v) u, v u = x x u + y y u, v = x x v + y y v. v x y f u u.1.3 f(x 1,..., x n ) x i = x(u 1,..., u m ) (i = 1,..., n) u j (j = 1,..., m) u j = n i=1 x i x i u j. x 1 x (,..., ) = (,..., u 1... 1 u m ) u 1 u m x 1 x.............. n x n x u 1... n u m (x 1,..., x n ) (u 1,..., u m ) (gradient) grad(f) = ( x 1,..., x n ).1 1. f(x, y) = x 8 + x 5 y 9 x(t) = 3t 4t y(t) = 5t 4 F (t) = f(x(t), y(t)) t = 1 x(1) = 1 y(1) = 1 df dt = dx x dt + dy y dt = (8x 7 + 5x 4 y 9 )(6t 4) + 9x 5 y 8 5 = ( 8 + 5) 45 = 51. f(x, y) = x + y x(u, v) = u + 3v y(u, v) = uv (u, v) = ( 1, 1) u, v ( 1, 1 ( 3 ) 1 1 3. z = f(x, y), x = ρ cos θ, y = ρ sin θ ) = ( 1, ) ( x ) + ( y ) = ( ρ ) + 1 ρ ( θ ). ρ = x x ρ + y y ρ = x = x θ x θ + y y θ = x 5 cos θ + y sin θ ( ρ sin θ) + y ρ cos θ

( ρ ) + 1 ρ ( θ ) = ( cos θ + x = ( x ) + ( y ). y sin θ) + 1 ρ ( x ( ρ sin θ) + ρ cos θ) y. f(x, y) y ( x f) = f y x = f x,y, x ( x f) = f x = f x,x..4 [Schwartz] (p, q) f x, f y, f xy f xy f yx f x,y (p, q) = f y,x (p, q). f(x, y) = log x + y f = f x + f y = 0 3 3.1 3.1 f(x, y) f(a + h, b + k) = f(a, b) + hf x (a + hθ, b + kθ) + kf y (a + hθ, b + kθ) 0 < θ < 1 a, b, h, k F (t) = f(a + ht, b + kt) F (1) F (0) = F (θ) 0 < θ < 1 x = x(t) = a + ht y = y(t) = b + kt df (t) dt = dx x dt + dy y dt = hf x (a + ht, b + kt) + kf y (a + ht, b + kt) f(x, y) F (1) F (0) f(a + h, b + k) f(a, b) = hf x (a + hθ, b + kθ) + kf y (a + hθ, b + kθ). 6

3. f(x, y) n n + 1 f(a + h, b + k) = f(a, b) + (h x + k )f(a, b) + y + 1 n! (h x + k y )n f(a, b) + R n R n = 0 < θ < 1 1 (n + 1)! (h x + k y )n+1 f(a + θh, b + θk) 3. y = f(x) x y y x (explicit function) F (x, y) = 0 y x (implicit function) F (x 1,..., x n, z) = 0 z x 1,..., x n F (x 1,..., x n, y) = 0 y = f(x 1,..., x n ) x 1 x,..., x n x 1 0 F + F F = 0 x 1 y x 1 y = F x 1 (x 1,..., x n, y) x 1 F y (x 1,..., x n, y) y = f(x 1,..., x n ) 3.3 [ ] F (x, y) (p, q) F x (x, y) F y (x, y) F (p, q) = 0 F y (p, q) 0 x = p y = f(x) (1) F (x, f(x)) = 0 f(p) = q () F F (x, f(x)) + x y (x, f(x))f (x) = 0 3.4 [ ] F (x, y, z) (p, q, r) F x (x, y, z) F y (x, y, z) F z (x, y, z) F (p, q, r) = 0 F z (p, q, r) 0 (p.q) z = f(x, y) 7

(1) F (x, y, f(x, y)) = 0 f(p, q) = r () x = F x F z, y = F y F z n 3.3 z = f(x, y) P (p, q) P Q(x, y) f(p, q) < f(x, y) z = f(x, y) P (minimum) P f(p, q) f(p, q) > f(x, y) z = f(x, y) P (maximum) P f(p, q) (extremum point) x y P (p, q) z = f(x, y) f x (p, q) = f y (p, q) = 0 f x (p, q) = f y (p, q) = 0 f(x, y) (stationary point) 3.5 f(x, y) (p, q) A = f xx (p, q), B = f xy (p, q), C = f yy (p, q) (1) B AC < 0 (p, q) (a) A > 0 f(p, q) (b) A < 0 f(p, q) () B AC > 0 (p, q) 8

3. n = 1 f(p + h, q + k) f(p, q) = hf x (p, q) + kf y (p, q) + 1 ( ) h f xx (p + θh, q + θk) + hkf xy (p + θh, q + θk) + k f yy (p + θh, q + θk) f x (p, q) = f y (p, q) = 0 = 1 ( h k k f xx(p + θh, q + θk) + h ) k f xy(p + θh, q + θk) + f yy (p + θh, q + θk) h/k h, k B AC B AC < 0 0 A (a) A > 0 f(p + h, q + k) f(p, q) > 0 f(p, q) (b) A < 0 f(p + h, q + k) f(p, q) < 0 f(p, q) B AC > 0 h/k f(p + h, q + k) f(p, q) (p, q) B AC = 0 3.1 f(x, y) = 4xy y x 4 f x = 4y 4x 3, f y = 4x 4y, f xx = 1x, f xy = 4, f yy = 4 f x (x, y) = f y (x, y) = 0 y = x x = 1, 0, 1 D = 16 48x = 16(1 3x ) (1, 1), ( 1, 1) (0, 0) 3.4 3.6 ( 3. n = 1 ) f(x, y) f x, f y (C ) a, b h, k θ 0 < θ < 1 f(a + h, b + k) = f(a, b) + hf x (a, b) + kf y (a, b) 1 (h f x,x (a + θh, b + θh) + hkf x,y (a + θh, b + θk) + k f y,y (a + θh, b + θk)) 9

3.7 f(x), g(x) [a, b] (a, b) g (x) 0 a < u < b f(b) f(a) g(b) g(a) = f (u) g (u). (1) F (x) F (x) = f(x) f(a) f(b) f(a) (g(x) g(a)) g(b) g(a) F (a) = F (b) = 0 Roll F (u) = 0 (1) 3.8 F (x) 0 t 1 < θ < 1 F (t) = F (0) + F (0)t + 1 F (θt)t. () f(x) = F (x) F (0) F (0)x, g(x) = x f(0) = g(0) = 0 3.7 0 t u f 1 (x) = F (x) F (0), g 1 (x) = x 3.7 v 0 u v 0 t v = θt 0 < θ < 1 F (t) F (0) F (0)t t = f (u) g (u) = F (u) F (0) = F (v) u = F (θt. θ t > 0 t < 0 F (t) = f(a + ht, b + kt) Chain Rule F (t) = f x (a + ht, b + kt)h + f y (a + ht, b + kt)k. f x (a + ht, b + kt), f y (a + ht, b + kt) Chain Rule F (t) = f x,x (a + ht, b + kt)h + f x,y (a + ht, b + kt)hk f y,x (a + ht, b + kt) + f y,y (a + ht, b + kt)k Schwartz f x,y = f y,x 3.8 t = 1 0 < θ < 1 f(a + h, b + k) = F (1) = F (0) + F (0)t + 1 F (θt)t = f(h, k) + hf x (a + h, b + k) + kf y (a + h, b + k) + 1 (h f x,x (a + θh, b + θh) + hkf x,y (a + θh, b + θk) + k f y,y (a + θh, b + θk)). 10