修士論文

Similar documents
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

LLG-R8.Nisus.pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

空気の屈折率変調を光学的に検出する超指向性マイクロホン

Microsoft Word - 学士論文(表紙).doc

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

4‐E ) キュリー温度を利用した消磁:熱消磁

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

C: PC H19 A5 2.BUN Ohm s law


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

[ ] [ ] [ ] [ ] [ ] [ ] ADC

pdf

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

TOP URL 1

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Part () () Γ Part ,

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

( ) ,


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

all.dvi

本文/目次(裏白)

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Note.tex 2008/09/19( )

基礎数学I

『共形場理論』


振動工学に基礎

85 4

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

c 2009 i

koji07-01.dvi

橡博論表紙.PDF

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

all.dvi


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

77

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

70 : 20 : A B (20 ) (30 ) 50 1

NETES No.CG V


8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

橡実験IIINMR.PDF

I II III IV V

Untitled

τ τ


TOP URL 1

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)


* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

Gmech08.dvi

keisoku01.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

高校生の就職への数学II

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

meiji_resume_1.PDF


The Physics of Atmospheres CAPTER :

A

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

総研大恒星進化概要.dvi


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

untitled

main.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II Time-stamp: <05/09/30 17:14:06 waki> ii

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Ł\”ƒ1

Transcription:

SAW 14 2 M3622

i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35

5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2 38 5-1-3 41 5-1-4 41 5-2 Wedge2 45 5-2-1 SAW 45 5-2-2 47 5-2-3 5 5-3 53 ii 6 55 6-1 55 6-2 55 57 58 59 6

1 1 1-1 1 ( ) 1) 2) 3) ( ) - 1 -

1 1-2 SAW 4) SAW 1-3 1 2 SAW 3 4 SAW 2 5 SAW 2 SAW 3 6-2 -

2 2 5) 128Y X LiNbO3 LiNbO3 2-1 (surface acoustic wave:saw) (interdigital transducer:idt) SAW λ λ/2 2-1 - 3 -

x 2 x 1 2 1885 Lord Rayleigh 1 9% 9 2-1 1/5 ( ) LiNbO3 2-2 x1 (x3 ) xi ui u = A e i i αω υx e ω j ωt υ 3 x 1 ( i = 1 ~ 3) i (=13) υ α x3 x 3 2-2 - 4 -

2 α 3ω α pω = υx 3 υx 3 1 u1 F1 e pe e ω j ωt υx u = 1 α 3ω α pω F 1 = υx 1 3 υx 3 1 u1 j e e e α 3 p ω j ωt υx p =-F2/F1 F1F2 u3 u1 9 2-2 SAW 128Y X LiNbO3 µm 4µm2 IDT 2-3 SAW 2-4 LiNbO3 396 m/s SAW f υ λ υ f = λ 4µm 9.6 MHz - 5 -

2 2-3 SAW LiNbO 3 : [mm] t = 1 IDT 16 43 2 IDT : [mm] 9 16 8.1 : aluminum : µm : 4 µm 2 2-4 SAW - 6 -

2 2-3 2-3-1 SAW (HEWLETT PACKARD IMPEDANCE/GAIN- PHASE ANALYZER 4194A) 2-5 LiNbO3 (G) 9.59 MHz 2-6.1 ml G G G 2 SAW 2 1 2-7.1 ml 9.59 MHz 9.59 MHz - 7 -

2 G [S] 25 2 15 5 9. 9.5..5-5 -5 - B G [MHz] 25 2 15 5 - B [S] 2-5 () 15 15 15 15 G [S] 5 9. 9.5..5-5 B [MHz] G (a).1 ml 5-5 B [S] G [S] 5 9. 9.5..5-5 B [MHz] G (b).2 ml 5-5 B [S] 15 15 15 15 G [S] 5 9. 9.5..5-5 B [MHz] G 5-5 B [S] G [S] 5 9. 9.5..5-5 B [MHz] (c).3 ml (d).4 ml G 5-5 B [S] 2-6 SAW ( ) - 8 -

2 mist Fluid SAW device IDT 15 G 15 G [S] 5 B 5 B [S] 9. 9.5..5-5 [MHz] -5 2-7 SAW ( ) - 9 -

2-3-2 2 9.59 MHz 1 khz 1 msec 9.59 MHz 2-8 IDT LiNbO3 8 V-p 1 khz (1 msec) 2-8 (LDVLaser Doppler Vibrometer, Polytec OFV 51,OFV27) A f V V = 2πfA 2-9 - -

2 2-6 V-p 1 khz G [nm] 3 25 2 15 5 1.5 1..5 [m/sec] 2 3 4 5 6 7 8 [V -p ] 2-9 [nm] 2 15 5 1.2 1..8.6.4.2 [m/sec] 9.5 9.6 9.7 9.8 9.9. [MHz] 2- - 11 -

2 2-3-3 SAW SAW 2-11 ( ) θr θ R = sin 1 V W / V R VR VW θr =23 θ R 2-11 - 12 -

3 3 3-1 3-1 (IDT) 128 Y X (MHz) ( ) IDT IDT 3-1 - 13 -

3 3-2 3-2 ( ) θ R 3-2 3-3 (1) (5) (A) (C) ( ) υ - 14 -

3 (A) (B) (C) (1) (2) (3) (4) (5) T c t 3-3 - 15 -

3 φ 3-4 x x ( ) z xz 2 2 φ φ + = 2 2 x z φ υ ρ σλ g λ πσ υ = g 2 2 π + ρλ λ = 2π / k λ = 2π / k 3-4 - 16 -

3 λ 2πσ υ (3.1) ρλ τ υ λ = υτ (3.1) λ υ = = τ 2πσ ρλ 3 λ 2πσ = 2 τ ρ fe fk τ = 1 f k 3 2πσ λ = (3.2) 2 ρf k fe fk f = n/ 2 k f e n 1 n = f k = f e / 2 () - 17 -

8πσ λ = 2 ρf e 3 1 3 d λ κ 1 3 8πσ d = κ 2 (3.3) ρf e d fe 2/3 fe d 3-5 (3.3) κ 3-5 khz MHz MHz 5 MHz (3.3) κ = 1. MHz 3µm [µ] k k 1 M M [Hz] 3-5 - 18 -

4 SAW 4 SAW 3 2 SAW 2 4-1 SAW 2 4-1 IDT (SAW ) SAW SAW SAW SAW SAW SAW 2 SAW 4-2 4-2 A B Normal - 19 -

4 SAW SAW 4-1 Normal A B IDT SAW IDT SAW 4-2 - 2 -

4-2 4 SAW 4-2-1 2 2-4-2 2 2-4-2 4-2 A B 4-3 G Q 4-1 15 G 15 G [S] 5 B 5 B [S] 9. 9.5..5-5 [MHz] (a) A -5 15 G 15 G [S] 5 B 5 B [S] 9. 9.5..5-5 [MHz] (b) B -5 4-3 - 21 -

4 SAW 4-1 A B G Q A 9.59 MHz 11.1 ms 135.1 B 9.59 MHz 12.7 ms 129.7 4-2-2 LDV 4-4 SAW 4 µm LDV LDV LDV µm 4-5 9.59 MHz 1 khz y IDT LDV 3 mm y 4-5 2 2 SAW IDT 4-4 - 22 -

A [mn] A [mn] 3 4 SAW 18 2 A θ -18.5 1. 1.5 2. 2.5 3. [mm] 3 (a) A 2 A θ -18.5 1. 1.5 2. 2.5 3. [mm] (b) B 4-5 18 θ [] θ [] - 23 -

4 SAW 4-3 SAW 2 9.59 MHz 1 khz 4-6 2 1 1 (2 CH) (1 khz) 2 CH 9.59 MHz 2 CH 2 2 EN MODEL 24L RF POWER AMPLIFIER WAVE FACTORY HEWLETT PACKARD WF1946 3314A CH1 CH1 CH2 Iwatsu DS-8812 CH2 CH1 CH2 4-6 - 24 -

4 SAW VrmsI G 2 W = IV rms = GV rms 1 khz 9.59 MHz 959 859 19.59 1 W/9.59 SAW 2 (1) (.1 ml.15 ml) 1 4-7 SAW 4-7 - 25 -

4 SAW IDT 4-8 (a) (DOW CORNING : HIGH VACUUM GREASE) 4-8 (b)(c) SAW A [mn] A [mn] 3 (a) 18 2 A θ -18.5 1. 1.5 2. 2.5 3. [mm] 3 (b) 2 A θ -18.5 1. 1.5 2. 2.5 3. [mm] (c) 4-8 18 θ [] θ [] - 26 -

4 SAW 4-8 (2) 2 4-9 2 9.59 MHz 1 khz 2 4-9 1.27 mm Normal 1.27 mm.12. 1.27 mm [ml/min].8.6.4.2.8 1. 1.2 1.4 1.6 1.8 2. [mm] 4-9 - 27 -

(3) 4 SAW 2 1 2 4-9.59 MHz 1 khz 1.27 mm.12. 2 9.59 MHz 9.59 MHz [ml/min].8.6.4 1 9.59 MHz.2 2. 4. 6. 8. [W] 4- - 28 -

4 SAW 4-2 1 1/2 1 2 1 1 2 2 (3) 4-11 (a) 4-11 (b) 4-11 (b) 2 IDT θ.1 4-11 (a).8.6.4.2 2 2 3 4 5 6 7 [V -p ] 8 4-11 (b) - 29 -

4 SAW (4) 2 SAW 2 4-12 (a) 2 18 4-12 (b) 2 2 4-12 (c) 9.59 MHz 1 khz 1.27 mm 2 23 (a).12. (b) [ml/min].8.6.4.2 2. 4. 6. 8. [Wh] (c) 4-12 2-3 -

4 SAW (5) 5 mm 5 4-13 9.59 MHz 1 khz 1.27 mm 4-13 [mm] 15.. 5. 5 mm 2.5 cm 2. 4. 6. 8. [W] 4-13 - 31 -

4 SAW (6) 4-14 (a) 1 mm He-Ne 4-14 (b) 4-14 (b) 6 W.25 msec IDT 3.3 mm IDT 4 m/s.8 µsec He-Ne 4. (a) [msec] 3. 2. 1. 2. 4. 6. 8. [Wh] (b) 4-14 - 32 -

(8) 4 SAW Normal 4-15 4-15 4-15 - 33 -

(7) 4 SAW ml ml 4-15 N/m.5.4 [ml/min].3.2.1 : 5.4 W.2.4.6.8.1 [N/m] 4-16 - 34 -

4 SAW 4-4 SAW 2 Normal 1.27 mm SAW 1 2 2 ( ) - 35 -

5 SAW 5 SAW 4 2 SAW SAW 2 SAW IDT 3 2 Wedge IDT 3 2 Wedge2 2 5-1 Wedge 5-1-1 SAW SAW 2 2 SAW IDT 3 5-1 5-1 C D Wedge - 36 -

5 SAW Wedge C SAW D SAW IDT IDT SAW 9.57 MHz 9.57 MHz (a) 1 mm 1 mm 1 mm 27 22 1 mm LiNbO 3 (a) SAW 5-1 Wedge SAW - 37 -

5 SAW 5-1-2 (1) 5-1 C D 5-2 G Q 5-1 2 2 15 15 G [S] G B [S] 5 B 5 9. 9.5..5-5 2 [MHz] (a) C -5 2 15 15 G [S] G B [S] 5 B 5 9. 9.5..5-5 [MHz] (b) D -5 5-2 5-1 C D G Q C 9.57 MHz. ms 81. D 9.57 MHz 11. ms 135. - 38 -

5 SAW (2) LDV C 5-3 x y u v D y 5-4 9.57 MHz 1 khz SAW SAW x y u v A [mn] A [mn] 3 IDT 5-3 2 θ A -18.5 1. 1.5 2. 2.5 3. 3 [mm] (a) C y 18 18 2 θ A -18.5 1. 1.5 2. 2.5 3. [mm] (b) D y θ [] θ [] 5-4 (1) - 39 -

A [mn] A [mn] 3 2 θ 5 SAW 18-18.5 1. 1.5 2. 15 5 [mm] (c) C u θ A -18.5 1. 1.5 2. [mm] (d) C v A 18 θ [] θ [] 5-4 (2) 5-4 (1) (a)(b) y (b).5 mm 18 2 2 5-4 (2) (c) u - 4 -

5 SAW 5-4 (2) (d) v 5-1-3 Wedge 9.57 MHz 1 khz 1.27 mm SAW LDV - 41 -

5 SAW (1) 2 5-5 Wedge 2 (2) 18 SAW 2 2 18 2 5-5 2 1.5.12. [ml/min].8.6.4.2 2. 4. 6. 8 [Wh] 5-5 2. - 42 -

5 SAW (2) 5-6 Wedge 5-7 8 6. 4. 2. [W] 15.. 5. [mm]. 5-6 5-7 - 43 -

5 SAW 5-1-4 5-4 (2) 5-8 5-8 5-8 IDT IDT IDT IDT SAW 5-8 - 44 -

5 SAW 5-2 Wedge2 5-2-1 SAW SAW 2 2 SAW IDT 3 5-9 5-9 E F Wedge2 Wedge_2 E F IDT IDT SAW 9.74 MHz SAW 9.74 MHz (a) 5-9 (1) Wedge2-45 -

5 SAW 1 mm 3 1 mm (b) SAW 5-9 (2) Wedge2-46 -

5 SAW 5-2-2 (1) 5-9 5- G Q 5-2 2 2 15 15 G [S] G B [S] 5 B 5 9. 9.5..5-5 2 [MHz] (a) E -5 2 15 15 G [S] G B [S] 5 B 5 9. 9.5..5-5 [MHz] (b) F 5- -5 5-1 E F G Q E 9.74 MHz 13.5 ms 1.3 F 9.74 MHz 13.4 ms 13.5-47 -

5 SAW (2) LDV 5-11 y u 5-12 SAW u y IDT A [mn] 3 5-11 18 2 A θ -18.5 1. 1.5 2. θ [] A [mn] 3 (a) E y 18 2 A θ -18.5 1. 1.5 2. (b) F y θ [] 5-12 (1) EF - 48 -

5 SAW A [mn] 3 18 2 A θ -18.5 1. 1.5 2. θ [] (c) E u A [mn] 3 18 θ 2 A.5 1. 1.5-18 2. (d) F u θ [] 5-12 (2) EF 5-12 (1) (a)(b) 18 2 2 2 5-12 (2) (c)(d) Wedge - 49 -

5 SAW 5-2-3 Wedge2 9.74 MHz 1 khz 1.4 mm (1) 5-13 Normal Wedge 2 Wedge2 2 5-14 5-14 2 18 2 3 2 [ml/min].16.8.4.12 4. [W] 8. 2. 6. 4. [W] 8. 2. 6..14..6.2 5-14 - 5 -

5 SAW [ml/min] Wedge2.12..8.6.4.2-18 -9 9 18 [] 7 W (2) 5-14 5-15 2 4 W mm Wedge2 mm [mm] 15.. 5. 2. 4. 6. 8. [W] 5-15 - 51 -

5 SAW (3) Wedge2 5 mm 5-16 5 µm MHz µm µm 5-16 ( ) - 52 -

5 SAW 5-3 SAW IDT 3 2 Wedge IDT 3 2 Wedge2 2 2 4 Normal 5-17 Wedge2 5-18 Wedge2 Wedge2 5 5-3 Normal 1 4 W 2 2 2 Wedge2 2-53 -

.16.14 Wedge2 9.74 MHz 9.74 MHz 5 SAW [ml/min].12..8.6.4 Normal Wedge 9.59 MHz 9.59 MHz 9.57 MHz 9.57 MHz.2 [mm] 15.. 5. 2. 4. 6. [W] 5-17 () 8. 2. 4. 6. 8. [W] 5-18 ( ) 5-3 Normal 1 1 1 Wedge 1.4.65 1 Wedge2 3 1.35 5-54 -

6 6 6-1 2 SAW SAW SAW SAW IDT 3 2 Wedge IDT 3 2 Wedge2 2 3 Wedge2 2 2 2 2 Wedge2 2 6-2 SAW - 55 -

6 SAW 2 2 2 SAW SAW SAW SAW IDT IDT SAW - 56 -

James R Friend SAW 2 1 3 1 2-57 -

1) Japan Hardcopy '99(1999) 2) () (1993) 3) (199) 4) SAW 5) US95-2pp. 1-8 (1995) 6) (1978) 7) (1983) 8) 15 (1993) 9) (1988) - 58 -

(1), J. Friend,,, " 2 ", 13 21.9 (2), J. Friend,,, " SAW ", 21.11 (3), J. Friend,,, " SAW ", 14 22.3-59 -

IDT (1) 1. 3 2. 3 (2) 2 Al φ.1 mm 8m Cr cm 2. -3 Pa CrAl - 6 -

(3) 9 3 ( ) (4) 6 LiNbO3 128Y-cut X XY 8 2 ( ) (5) 1 CrAl AlCr - 61 -

Table 1 The kind of etching liquids : = 2 : 1 cc 2 17 g 5 cc - 62 -