V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Similar documents
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

30

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


TOP URL 1

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Note.tex 2008/09/19( )

IA

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

振動と波動

QMII_10.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

sec13.dvi

pdf


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

構造と連続体の力学基礎

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I ( ) 2019

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

untitled

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

A 99% MS-Free Presentation

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

The Physics of Atmospheres CAPTER :

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

( ) ,

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

i

0.1 I I : 0.2 I

19 /

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


phs.dvi

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Part () () Γ Part ,


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

液晶の物理1:連続体理論(弾性,粘性)

i

Untitled

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP


2011de.dvi

( )

master.dvi

Gmech08.dvi

gr09.dvi


II 2 II

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

chap1.dvi

I 1

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Microsoft Word - 章末問題


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

webkaitou.dvi

高知工科大学電子 光システム工学科

4‐E ) キュリー温度を利用した消磁:熱消磁

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Transcription:

199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx) Vx) + V 1 x /) x ξh n ξ) = 1 H n+1ξ) + nh n 1 ξ) iii) x E Vx) Vx) E. Vx) m V cos x + 1) π x π Vx) = x < π, x > π V x t = x V

199 L b a l v σ C R R V 1. T Qt) l L, T l/v. C Q c t) Qt) Q c t) jt) Vt) 3. Qt) Vt) Vt) ˆVω) ) Vt) ˆQω) ω ˆVω) ˆVω) ω = Qt) = ˆQω)e iωt dω, Vt) = ˆVω)e iωt dω 4. Vt) 1MΩ R = 1kΩ, C = 1 1 9 Farad, l = 3m, L =.3m, v = 3 1 7 m/sec l N = 1 1 1 e = 1.6 1 19 Coulomb R 5Ω a b V L l beam mettalic pipe capacitance C resistance R V potential difference earth

199 3 3 3 S = L x L y L x, L y x y m n k B π T 1.. ρe) dne)/de ρe) µ µ n T E F T 3. k B T E F x d f dx = π dx 3, f x) = 1 e x + 1 4. E F E E E F + E ρe) = E E F α α > 1 k B T E

4 199 4 4 X X X X R 6.cm S 1 A G X 1.54Å 1. X A) X X X B) C) X D) E) X D) F) G) G). 3. 4. S 3.3cm 5. S = 5.9cm 1 sin 13.5 =.33 7. =.471rad sin 15.8 =.73 sin.6 =.35 sin 5.4 =.49 sin 8. =.473 sin 3.3 =.55 sin 3.7 =.54 31.5 =.55rad 41. =.719rad 5.8 =.886rad 56.4 =.983rad 6.6 = 1.58rad 65.4 = 1.141rad

199 4 5

6 199 5 5 S V δ r 1 r ) V δ r) r 1, r p 1 m + p m V δ r 1 r ) ψ r 1, r ) = εψ r 1, r ) 1) m p 1, p 1. ψ r 1, r ) r 1 r ψ r 1, r ) ψ r 1, r ). ψ r 1, r ) g) ψ r 1, r ) = e i r 1 r ) g) ) 3. g) ε 1 )g) V g q) S = εg ) 3) q ε) = k /m δ r) = 1 S q e i q r 1 4. 3) q g q) k S q g q) = C C 3) g) V C g) = ε) ε ε V S 1 ε) ε = 1 4) 5. 4) ε) ε ε ε 4) ε mv /π 1 E = ε ] E = ε exp [ 4π mv

199 6 7 6 1. M = 3. 1 3 kg R 1 = 1 6 m R = 1 4 m U G. L = 3 1 m n ν 1 U E ν 3. 1/6 ν e ν e ν e + p n + e + M D = 3 1 6 kg n ν σ = 1 46 m 1/ E ν = 1MeV 4. t E min E max G = 6.67 1 11 m 3 kg 1 s N A = 6. 1 3 1eV = 1.6 1 19 J

8 199 7 7 1.. φ C N C C ) ψn C C N) 3. α- β- 4. 1

199 1 9 1 1. i) x Vx) V 1 x + x4 4 + ) V 1 x ) 1) Schrödinger eq. d ) E m dx ψ + + V mω x ψ = d { me + dx ψ + V ) mω ) x } ψ = V = mω ) x = αx d dx = 1 d α dx, x = αx) α 4 = mω ) d dx ψ + λ X )ψ = ), λ = me + V ) α = E + V ) ω 3) 4) u = e ± X u + 1 X )u = X ± 4) 4) e ± X e X 4) ψx) = e X ϕx) 4) d dϕ ϕ X + λ 1)ϕ = 5) dx dx λ 1) = nn =, 1, ) X e X e X λ = n + 1n =, 1, ) 6) 3) E = E n = n + 1 ) ω V 7) 7) 6) 5) n Hermite N ψ n X) = Ne X Hn X) ψx) dx = 1 1 = N e X H n X) αdx = αn π n n! N = α π n n!) 1 π 1 = mω n n! π 1 [ ψ n x) = mω n n! exp mω ] ) mω x H n x 8)

1 199 1 x E n V n + 1 ) ω V ii) ) Vx) = V cos x 1 + x iii) E n = n Vx) n = = = = = = = V 4 N α 5 N e X H nx) e X H nx)x 4 dx e X XH n X)) X dx V 4 x4 N e α) x Hn V ) 4 α4 X 4 αdx e X H nx)x 4 dx e X [ 1 H n+1 + nh n 1 ] X dx x α) V 4 x4 ) dx e X [ 1 4 XH n+1) + nxh n+1 )XH n 1 ) + n XH n 1 ) ] dx e 1 { 1 X 4 H n+ + n + 1)H n { 1 H n + n 1)H n } { 1 + n } H n+ + n + 1)H n } + n { 1 H n + n 1)H n } dx H n [ ] [ { 1 1 1 = e X 4 4 H n+ + 4 n + 1) + nn + 1) 1 + 1 } ] n Hn + n n 1) Hn dx 4 [ ] 1 n + = e X 16 H 1) n+ + Hn + n n 1) Hn dx 4 = 1 π n+ n + 1) n + )! + π n n! + n n 1) π n n )! 16 4 = { } n + 1)n + ) π n n + 1) nn 1) n! + + 4 4 4 = π n n! 6n + 6n + 3 4 E n = n Vx) n = V 4 N α 5 π n n! 6n + 6n + 3 4 α 5 π n n! 6n + 6n + 3 = V 4 = V 3 α π n n! 4 ) n + n + 1) mω = 3m n + n + 1) V = mω ) Vx) = V cos x eex = V 1 + ee x 1 V x + 1 ) 4 x4 = V 1 1 x ee ) + e E + 1 V 4 x4 V

199 1 11 ) x ee V x ee V 1 e E E n = n + 1 ) ω V e E V V. ground state 1st excited state ground E ψ x) 1st excited E 1 ψ 1 x) ground state 1st excited state ψ ψ x), ψ 1 x) Schrödinger eq. i t ψ nx, t) = E n ψ n x, t) n =, 1) [ ψ x, t) = exp ie ] t ψ x), [ ψx, t) = C ψ x, t) + C 1 ψ 1 x, t) = exp [ ψ 1 x, t) = exp ie t ie 1t ] ψ 1 x) ] { C ψ x) + C 1 exp ψx, t + π E 1 E ) = ψ x, t), ψx, t + π E 1 E ) = ψx, t) [ ie1 E )t ] } ψ 1 x) ω = E 1 E x > x <

1 199 Qt) 1. RC l/v L/v σl σl L + l)/v l/v Qt) T t. Q c j d dt Qt) + Q ct)) = jt) 1) Vt) = R jt) = 1 C Q ct) ) +Q C ) 1) j, Q c dvt) + 1 dt RC Vt) = 1 C dqt) 3) C dt R j V 3. Qt) T Vt) = Ṽω)e iωt dω, Qt) = Qω)e iωt dω 4) 4) 3) iωṽω) + 1 RC Ṽω) = iω C Qω)... Ṽω) = iω Qω) 1 RC + iω C 5) Qt) t l/v σl Qω) Qω) = 1 π Qt)e iωt dt = 1 π Ṽω) l/v σl)e iωt dt = σl π e iωl/v 1 iω Ṽω) = 1 π Ṽω) = 1 π e iωl/v 1 σl 1 RC + iω C σl C sin ωl v ) 1 RC + ω RC π σl ωl C v ω ) 6) Ṽω)

199 13 Vω) ω 4. 6) Vt) Vt) 3) Vt) = Ṽω)e iωt dω = 1 σl e iωt l/v) e iωt dω π C 1 1 RC + iω RC + iωdω, t < ) σl = C e t RC, < t < l/v) σl C e t RC e l/v RC + 1), t > l/v) σl C = 1 en C l L = 1.6 1 [V] l v = 1 6 [sec] 1 4 [sec] R = 1kΩ) RC = 5 1 8 [sec] R = 5Ω) 16mV R=5Ω 16mV R= 1kΩ 1 µ s 1 µ s

14 199 3 3 1. Schrödinger ) m x + Ψ = EΨ 1) y Ψ = Xx)Yy) 1) ) X m X + Y = E Y X /X = k x, Y /Y = ky X = A x e ik xx, Y = A y e ik yy k x, k y Xx) = Xx + L x ) e ik xl x = 1 k x = πn x /L x n x =, ±1, ±, ) k y = πn y /L y n y =, ±1, ±, ) 1) Ψ = Xx)Yy) = Ae iπ nx Lx x+ ny Ly y ) A = A x A y ) A = 1/ S Ψ = 1 e iπ S nx Lx x+ ny Ly y ) E = m k x + ky) = π ) m nx L x ) + ny L y ), n x, n y =, ±1, ±, ). E n x -n y E = L x, L y melx /π, mel y /π NE) = π me L x π me L y π = ms π E ) NE F ) = ns ms π E F = ns = E F = π m n T N fermi f E) N = ρe) f E)dE = ) ρe) ρe) = dne) de = ms π ρe) 1 de e E µ k BT + 1

199 3 15 N = ms π de e E µ k BT + 1 = ms ) π k BT ln e µ k BT + 1 = ns µ T n T E F ) ) µ = k B T ln e π m n 1 k BT 1 = k B T ln e E F k BT 1 3) 3. UT) UT) = EρE) f E)dE = ms π EdE e E µ k BT + 1 k B T E F 3) µ E F β 1/k B T UT) ms π EdE e βe E F) + 1 CT) CT) = UT) 1 ms ) EdE T k B T β π e βe E F) + 1 = ms 1 π k B T x βe E F ) dx = βde CT) = ms 1 x β + E ) x F β ex dx π k B T βe F e x + 1) β = ms 1 1 x + βe F )xe x dx π k B T βe F β 3 e x + 1) 1/β E F βe F 1 ms 1 1 x + βe F )xe x dx π k B T β 3 e x + 1) EE E F )e βe E F) e βe E F) + 1 ) de x + βe F ) d dx f x) = d ) 1 e x dx e x = + 1 e x + 1) CT) ms π 1 k B T 1 d ms 1 β 3 x f x)dx = dx π k B T k BT) 3 ) π 3 = ms πk B T 3 4. ρe) = E E F α, α > 1for E F E E E F + E) UT) = EF + E E F E E E E F α de e βe µ) + 1 k B T E F, E CT) 1 k B T = 1 k B T EF + E E F E EF + E E F E ) E E E F α 1 de β e βe E F) + 1 E E E F α E E F)e βe E F) e βe E F) + 1 ) de

16 199 3 x βe E F ) = 1 k B T β E β E = 1 k B T β α 3 = 1 k B T β α 3 T α+1 ) x β + E x F β α x β ex dx e x + 1) β x + βe F ) x α xe x e x + 1) dx x α x e x dx e x + 1) 4

199 4 17 4 1. A B C D E F G X. 1.X.X 3. 4. S = 3.3cm θ = 3.3cm 6cm θ = 15.8 =.55[rad] S = 3.3cm n = 1 d =.8[Å] = a 5. S = 5.9cm θ = 5.9cm 6cm θ = 8. =.983[rad] d sin θ = λ d = 1.63[Å] h, k, l) 1 d = 1 a h + k + l ) h + k + l = 3 h, k, l) = 1, 1, 1)

18 199 5 5 1. ψ r 1, r ) = ψ r, r 1 ) ψ r 1, r ) = ψ r, r 1 ) ψ r 1, r ) r 1 = r ψ = δ r 1 r )ψ r 1, r ) = Schrödinger ψ r 1, r ) ψ r 1, r ){ V δ r 1 r )}ψ r 1, r )d r 1 d r = V ψ r, r) d r <. p 1 + p )ψ r 1, r ) = 1) R r R 1 r 1 + r ), r r 1 r ψ r 1, r ) ψ R, r ) 1) 1) p 1 + p )ψ r 1, r ) = i r 1 + r ) ψ r 1, r ) = i R ψ R, r ) = ψ R, r ) r ψ r 1, r ) = e i r 1 r ) g) ψ r 1, r ) = ψ r, r 1 ) e i r 1 r ) g) = e i r 1 r ) g ) g) = g ) g)

199 5 19 3. p 1 + p = 1 { p1 + p ) p 1 p ) } p 1 + p = + ) = i r 1 r i R p 1 p = ) = i r 1 r i r Schrödinger ψ R, r ) R p 1 m + p m V δ r ) ψ r ) = [ m d ] V δ r ) ψ r ) = εψ r ) d r ψ r ) = e i r g), δ r ) = 1 S q e i q r k m ei r g) V S e i + q) r g) = ε e i r g) q e i r k m g ) V g q) S = εg ) ) q 4. 1 S g q) = C q ) V C g) = ε) ε 3) 1 S g q) = C q = g q) = g q) q 1 S g) = C 4) 3) 4) V S 1 ε) ε = 1 5. V S 1 k m ε = 1

199 5 S V k 4π S πk k m εdk = mv 4π ε de E ε = 1 ε > ε < mv 4π log1 ε ε ) = 1 ε ε = < 1 exp 4π mv mv π 1 1 ) E = ε exp 4π mv

199 6 1 6 1. 1 r r ) 3 Mr) = M GMr) R r r r + dr dur) dur) = GMr) dmr) = G r ) 3 r r M 3r dr M = 3GM r 4 dr R R 3 R 6 UR) = R dur) = 3GM 5R... U = UR 1 ) UR ) = 3GM 5 1 R 1 R 1 ) 1/) ρφdv 1/ φ φ GM/r r > R) GM/Rr /R 3/) r < R) UR) = 1 R GM r R R 3 ) 3 dmr) = 3 ) GM 4 R = 3GM 5R.. 4πL n ν = Ū E ν n ν = U 4πL Ē ν = 3GM 1 πl Ē 1 ) ν R R 1 3. N = n ν 6 σn p N p M D = 3 1 6 kg N p = M D 1/ 1 1 3 N A N A M = 3 1 3 kg, L = 3 1 m, G = 7 1 11 m 3 kg 1 s, Ē ν = 1MeV, R 1 = 1 6 m, R = 1 4 m n ν = 1 16 m M D = 3 1 6 kg, N A = 6 1 3 N p = 9 1 3 n ν 6 σn p σn p 1[ m ] 1 σn p 1 46 [ m ] 9 1 3 = 9 1 14 [ m ] N = 3 1

199 6 4. E max, E min 1, t = t t 1 = L L = L 1 1 ) v v 1 c β β 1 E 1 = E = mc 1 β 1 mc 1 β 1) ) 3) β 1, β > 1) 3) ) c t L = mc 1 E 1 1 mc E 1 ) 1 ) mc E 1 c t L 1 + 1 mc E ) 1 + 1 ) mc E 1 = mc ) 1 1 E E1 mc >.. ) c t. mc / 1 L E 1 E1 1/ [ ] 1) β 3 1

199 7 3 7 1. α β α β. backbone C N, N C,C C, N C C=O 3. homopolypeptide hydrophilicity charge chemical energy in situ folding enzyme 4. ribonuclease urea urea C.B.Anfinsen) urea urea in vitro folding enzyme