地球惑星科学II 宇宙論(2/3)

Similar documents
Microsoft PowerPoint - 4.概論_コペル.ppt

宇宙はなぜ暗いのか_0000.indd

H20マナビスト自主企画講座「市民のための科学せミナー」

デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を

ブラックホールを コンピュータ上で 創る 柴田大 ( 京都大学基礎物理学研究所 )

<4D F736F F F696E74202D208D758B603293F78AE182C58CA982BD >

スライド 1

Microsoft PowerPoint comment

FdText理科1年

大宇宙

1. 内容と成果研究チームは 天の川銀河の中心を含む数度の領域について 一酸化炭素分子が放つ波長 0.87mm の電波を観測しました 観測に使用した望遠鏡は 南米チリのアタカマ砂漠 ( 標高 4800m) に設置された直径 10m のアステ望遠鏡です 観測は 2005 年から 2010 年までの長期

多次元レーザー分光で探る凝縮分子系の超高速動力学

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

Microsoft PowerPoint - komaba ppt [互換モード]

week1_all

第20回天文教育研究会集録原稿について

Microsoft PowerPoint - komaba ppt

観測的宇宙論

ニュートン重力理論.pptx

Microsoft PowerPoint - komaba ppt [互換モード]

Microsoft PowerPoint - 公開講座 pptx

PowerPoint プレゼンテーション

Microsoft Word - jupiter

科学技術教養T1(東)

Microsoft PowerPoint - 静岡大学理学部 V2

Microsoft Word - 08TUsuda.doc

地球惑星科学II 宇宙論(1/3)

天文学概論Ⅰ

第二の地球は存在するか?

Microsoft PowerPoint - システム創成学基礎2.ppt [互換モード]

省CO2型都市づくりのための自転車利用促進策にかかる調査報告書

Microsoft PowerPoint - nsu_01hubble_d_p

Microsoft PowerPoint - komaba ppt [互換モード]

天動説エウドクソス アリストテレス プトレマイオス ( 紀元前 400~00 年頃 : ギリシア ) ほとんど全ての星は互いの位置関係を変化させない 恒星 月の他に恒星に対して数個の動く明るい星がある 水星 金星 火星 木星 土星 これらは動きが極めて特殊 ( 逆行 ) これらは 惑星 (plnet

Microsoft Word - 01.docx

図 7-: コリオリ力の原理 以下では 回転台の上で物体が運動したとき 物体にはたらくみかけの力を定量的に求めてみる 回転台は角速度 で回転していて 回転台に乗っている観測者から見た物体の速度ベクトルの動径方向の成分を u 接線方向の成分を v とする 図 7-3: 回転台の上での物体の運動 はじめ

2016 年度 宇宙と地球と人間 講義資料 1 1. 古代 中世の宇宙観 2. 天体物理学の黎明期 東京学芸大学自然科学系宇宙地球科学分野講師 西浦慎悟 ( にしうら しんご ) 1. 古代 中世の宇宙観 天文学のはじまり a) 暦をつくるナイル川の氾濫の時期を知る ( 古代エジプト : 紀元前 3

_Livingston

素材

Microsoft Word - Ee_tg.doc

高軌道傾斜角を持つメインベルト 小惑星の可視光分光観測

スライド 1

CJT2C1Z1J154.indd

sougou070507

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

超新星残骸Cassiopeia a と 非球対称爆発

Microsoft PowerPoint - 宇宙論の展開11.pptx

第6章

Microsoft PowerPoint - komaba ppt

大阪大学 大学院理学研究科博士前期課程 ( 宇宙地球科学専攻 第 2 次募集 ) 入学試験問題小論文 (2013 年 10 月 26 日 11 時 00 分 ~12 時 30 分 ) 次の [1] から [5] までの 5 問のうちから 2 問を選択して解答せよ 各問には別の解答 用紙を用い 解答用

Microsoft Word - 月食ガイド

FdData理科3年

プラネタリウム学習投影番組一覧表 A : 小学校理科学習 A - 1 太陽の動きと星空の観察 3 年方角や時刻を調べながら太陽の 1 日の動きを観察します A - 2 夏の星座と月の様子 4 年 A - 3 月の動きと季節の星座 4 年 A - 4 冬の星座とその動き 4 年 A - 5 月の満ち欠

自然界に思いをはせる ( エーテル = 第 5 元素 ) 地と天は異なる組成 古代ギリシャの四元素説空気 火 木 地も天も同じ組成 古代中国の五行説 火 土土水 ( いずもりよう : 須藤靖 ものの大きさ 図 1.1 より ) 金 水 2

FdData中間期末社会地理

Taro-tentai_T1

Microsoft PowerPoint - 科学ワインバー#2

1 平均正答率1 平均正答率1 平均正答率1 平均正答率 小学校 6 年生 1252 人 ( 小学校第 5 学年内容 ) 8 6 全国 弘前市 コメント 話すこと 聞くこと の中の 意図 立場を明確にし

天文学会記者発表資料

DVIOUT-SS_Ma

大阪市立科学館研究報告 第21号 2011年 p.29-36

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

はじめに 卒業研究のテーマとして土星のリングを取り上げてきた 土星はその美しいリングを持つ惑星として有名である 太陽系の惑星では土星以外にもリングを持つ惑星に木星 天王星 海王星が挙げられるが 土星の持つリングはこの 3 つの惑星とは比べ物にならないほど はっきりとしていて特徴的である そこで本論文

Microsoft Word - Chap17

ゼロからはじめる「科学力」養成講座2(2009年度)

Microsoft PowerPoint - QA6-Ippan [互換モード]

<4D F736F F D CA48B8695F18D908AE989E E082C182C690AF82AA82DD82BD82A25F208BE08E715F5F92B290AE8CE35F2E646F63>

人工衛2 はなぜ地上に落ちてこないの? が落ちてこないわけを 次のようにして説明しましょう 模造紙をつなぎ合わせて地球に見立てた大きな円を描き 子どもに質問しながらボールの軌跡を書き込んでいきます 模造紙には地面に見立てた直線も引いておきます ( 丸い地球の全てを見せない ) 模造紙は折っておきます

京都教育大学環境教育研究年報第 25 号 17-25(2017) 17 土星の衝効果はなぜ起こるのか モデル実験を通してその謎を探る *1 *2 平川尚毅 中野英之 What Causes the Opposition Effect of Saturn An Experimental Approac

重力の謎

2-1_ pdf

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回


第 回天文宇宙検定 級問題 解答 4 天体による光の湾曲の応用として重力レンズ効果がある 今 レンズ天体を質点と見なすことができ 星 レンズ天体 観測者が一直線上にあるとしたときに 次の模式図の中で重力レンズ効果による光の振る舞いを最もよく表しているものはどれか 4 重力レンズは凸レンズに 似た 効

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から

宇宙における爆発的リチウム生成の初観測に成功-新星爆発は宇宙のリチウム合成工場だった-

スライド 1

それを矛盾なくこの世の問題として解決できるような知恵が必要となる この世 ( 宇宙 ) のはじまり 1 はじまり より前 : 特異点 はじまりとは 時間の区切りの中で 終わりと共に特異な点となる 宇宙のはじまりにおいても この特異点は問題となっている この世のはじまりも 特異点で ビックバンと呼ばれ

本資料のご利用にあたって ( 詳細は 利用条件 をご覧ください ) 本資料には 著作権の制限に応じて次のようなマークを付しています 本資料をご利用する際には その定めるところに従ってください *: 著作権が第三者に帰属する著作物であり 利用にあたっては この第三者より直接承諾を得る必要があります C

テンプレート

ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1

概論 : 人工の爆発と自然地震の違い ~ 波形の違いを調べる前に ~ 人為起源の爆発が起こり得ない場所がある 震源決定の結果から 人為起源の爆発ではない事象が ある程度ふるい分けられる 1 深い場所 ( 深さ約 2km 以上での爆発は困難 ) 2 海底下 ( 海底下での爆発は技術的に困難 ) 海中や

銅地金輸入 ( その2) HS モンゴル 0 0 ラオス 0 0 イラン 0 0 オマーン 0 0 ウズベキスタン 0 0 ノルウェー 0 0 ポーランド 0 0 コンゴ共和国 0 0 コンゴ民主共和国 0 0 タンザニア 0 0 モザンビーク 0 0 ジンバブエ 0 0 ニ

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

銅地金輸入 ( その2) HS モンゴル 0 0 ラオス 0 0 イラン 0 0 オマーン 0 0 ウズベキスタン 0 0 ノルウェー 0 0 ポーランド 0 0 コンゴ共和国 0 0 コンゴ民主共和国 0 0 タンザニア 0 0 モザンビーク 0 0 ジンバブエ 0 0 ニ

銅地金輸入 ( その2) HS モンゴル 0 0 ラオス 0 0 イラン 0 0 オマーン 0 0 ウズベキスタン 0 0 ノルウェー 0 0 ポーランド 0 0 コンゴ共和国 0 0 コンゴ民主共和国 0 0 タンザニア 0 0 モザンビーク 0 0 ジンバブエ 0 0 ニ

銅地金輸入 ( その2) HS モンゴル 0 0 ラオス 0 0 イラン 0 0 オマーン 0 0 ウズベキスタン 0 0 ノルウェー 0 0 ポーランド 0 0 コンゴ共和国 0 0 コンゴ民主共和国 0 0 タンザニア 0 0 モザンビーク 0 0 ジンバブエ 0 0 ニ

プラネテーマずっと2017.indd

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

3 学校教育におけるJSLカリキュラム(中学校編)(理科)3.単元シート・指導案例・ワークシート 12 地球と宇宙

第 回天文宇宙検定 級問題 解答 次のつのスペクトル図のうち ベガのスペクトルはどれか はベガのスペクトル はレグルス はアンタレス はカペラ 星間ガスの温度の高い順として 正しいものはどれか 惑星状星雲 > 超新星残骸 > 暗黒星雲 >HⅠ 雲 超新星残骸 > 惑星状星雲 >HⅠ 雲 > 暗黒星雲

えられる球体について考えよ 慣性モーメント C と体積 M が以下の式で与えられることを示せ (5.8) (5.81) 地球のマントルと核の密度の平均値を求めよ C= kg m 2, M= kg, a=6378km, rc=3486km 次に (5.82) で与えら

PowerPoint プレゼンテーション

LEDの光度調整について

研究機関とサイエンスコミュニケーション①(森田)


第8回星検1級問題

Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム

FdData理科3年

Transcription:

地球惑星科学 II 宇宙論 (2/4) 北海道大学 環境科学院 藤原正智 http://wwwoa.ees.hokudai.ac.jp/~fuji/ 1

地球中心説 ( 天動説 ) から太陽中心説 ( 地動説 ) へ ギリシャ時代の天文学 (~ プトレマイオス (AD2C) の アルマゲスト で完成 ) アラビア イスラム世界 ( 中東 ~ 北アフリカ )~ インド世界プトレマイオス体系 ( 天動説 ) が継承される ( 幾つか批判的研究もあったが天動説の域は出ず ) 天文観測技術の高度化 暦の精緻化 中世ヨーロッパ : ルネサンス (14~16C) ギリシャ ローマの古典古代への ( キリスト教世界観からの ) 復帰ローマ教会 ( バチカン カトリック 旧教 ) 宗教改革 ( 新教 プロテスタント ) 宗教戦争から政治戦争へ ( 絶対主義的皇帝対封建主義的諸侯 ) ローマ教会 : アリストテレス プトレマイオス体系である地球中心説を教義に採用 大学の誕生 : 聖職者養成が始まり 神学 法律学 医学 人文学を持つ大学へ 大学教授 研究者の多くは アリストテレス体系の注釈者 2

地球中心説 天動説 から太陽中心説 地動説 へ ニコラス コペルニクス 1473-1543 ポーランド フラウェンブルグ寺院大管区長 神が創った宇宙は美しいはず プトレマイオス体系は不完全 誤差の累積 美しくない 円 が多すぎる 一様円運動でない 試行錯誤の末 アリスタルコスの太陽中心説を 仮説として 復活 コペルニクス的転回 コペルニクス革命 教会を刺激せぬよう大変気を遣う ただし 依然として不完全 ケプラー ガリレオらがのちに支持 ティコ ブラーエ 1546-1601 デンマーク 望遠鏡発明以前では稀代の天文観測家 超新星爆発の発見 1572年 カシオペア座 銀河系内 恒星世界は永久不変ではない 21年間に渡る天文台での観測 年周視差が検出されないので地動説採らず 地球の周りを太陽が回り 太陽の周りを惑星が回ると考えた 宇宙論のすべて より 3

超新星爆発とは : 恒星の最期 supernova ( 爆発により星本体は四散 中心部に中性子星やブラックホールが残る場合あり ) SN 1054 おうし座 かに星雲 ( 銀河系内 ) (1054 年 ; 日本 中国 朝鮮 北米に記録あり ) http://hubblesite.org/gallery/album/ SN 1987A かじき座 ( 大マゼラン星雲内 ) (1987.2.23 (16.4 万光年 年前 ); カミオカンデ等で 4 ニュートリノ検出 2002 年小柴昌俊 ノーベル物理学賞 )

地球中心説 ( 天動説 ) から太陽中心説 ( 地動説 ) へ ヨハネス ケプラー (1571-1630 ドイツ ) 神は宇宙を神聖な調和に従って創造したはずという信念 数や図形の神秘性 美しさを追究 数学の才能あり コペルニクス説に感銘 ガリレオと多数の手紙を交換 ティコの弟子として火星の観測データから3つの経験則 ( 地動説に則る ) を発見 (1) 円ではなく楕円軌道 (2) 面積速度一定 (3) 公転周期の2 乗 平均軌道半径の3 乗 = 一定 http://jp.wikipedia.org/ [ 地学図表より ] 5

地球中心説 ( 天動説 ) から太陽中心説 ( 地動説 ) へ ガリレオ ガリレイ (1564-1642 イタリア)(1/3) 実験科学 実証科学 = 近代科学の創始者 ( アリストテレス体系と注釈者たちを批判 ) 運動論 ( ピサの斜塔 ) 機械学( 滑車 さお秤 てこの原理 斜面上の物体 ) そして天文学へ オランダで望遠鏡発明という噂を聞き 早速自作し人類初の天体観測を行う また 望遠鏡の製作 販売により家計の足しにする 中央図 : ガリレオ 中央公論社左 右図 : http:// amazing-space.stsci.edu /eds/tools/ 6

地球中心説 ( 天動説 ) から太陽中心説 ( 地動説 ) へ ガリレオ (2/3) 地動説の証拠 示唆となる現象多数発見 星界の報告 天文対話 天の川は無数の星 ( 太陽 ) の集まり 太陽系の相対化 月は光球ではなく表面には凹凸あり地球と同じ アリストテレスの 天上世界 も地球と同質 木星のまわりを 4 つの衛星がまわる 運動の中心となりうる天体 ( 重さを持つ ) が地球以外にもある 金星の満ち欠け コペルニクス説の方で説明可 ( 金星も月と同様 ) 太陽の黒点の存在と太陽の自転 完全であるべき太陽にしみ 運動の相対性 を指摘 : 地球の動きは地球上にいる者には分からない ( 船に乗って石を落とす ) ガリレオがスケッチした月の表面模様 http://amazing-space.stsci.edu /eds/tools/ 7

地球中心説 ( 天動説 ) から太陽中心説 ( 地動説 ) へ ガリレオ (3/3) ローマ教会により 2 回の宗教裁判を受け 異端誓絶 ( 背景に旧教 新教の対立や教皇 諸侯の対立など ) それでも地球は動いている ( 晩年は自宅に幽閉され 新科学対話 を執筆 ) (1992 年にローマ教会 ( ヨハネ パウロ 2 世 2005.4 逝去 ) はようやく間違いを認める ) ( 同時代のジョルダーノ ブルーノ ( ドメニコ会士 ) は 神は無数の太陽と無数の地球を作った と主張 長い逃亡生活の末 1600 ローマ教会により火あぶりの刑に ) ガリレオ裁判 当時の科学界や哲学界に悪影響を与える 以降 イタリアに代わり ニュートンのイギリス ライプニッツのドイツ パスカルのフランスにて 近代科学は発展していく 星界からの報告 天文対話 新科学対話 岩波文庫 ガリレオ ガリレイ 青木靖三著 岩波新書 評伝選 ガリレオ 豊田利幸 責任編集 中公バックス 世界の名著第 26 巻 8

地球中心説 ( 天動説 ) から太陽中心説 ( 地動説 ) へ アイザック ニュートン (1643-1727 イギリス ) 奇跡の 18 ヶ月 (20 代前半 ペスト ( 黒死病 ) 流行で大学閉鎖 ): 光学 微積分法 万有引力と運動の法則 1687 ニュートン力学の集大成 プリンキピア : ケプラーの法則が説明可能 他にも多くの現象 ( 潮汐 地球が回転楕円体であること 等 ) が理解可能 以降 太陽中心説は自然に受け入れられていく ( 直接証拠の観測はさらに 50 年後 ) 左 : http://www-groups.dcs.st-and.ac.uk/~history/pictdisplay/newton.html 中央 :http://en.wikipedia.org/wiki/isaac_newton (46 歳 ) 右 : http://amazing-space.stsci.edu/eds/tools/ ( 中世ヨーロッパの 科学者 は社会 ( キリスト教社会 ) からどの程度独立だったのか 現代の科学者はどうか ) 9

地球の自転はなかなか実感できない フーコーの振り子 ( 新札幌駅そばの札幌市青少年科学館でみることができます ) 1851 仏の実験物理学者フーコー パリのパンテオン寺院で地球自転を証明する実験実施振り子は 宇宙から見ると同じ面内で振動 しかし 回転する地球上で見ると振動面が回転北極 南極で実験すると 1 日に 1 回転する ( 当たり前 ) ( 極から離れると 1 回転するのに 1 日以上かかる 赤道では回転しない パリでは 1 時間に約 10 度回転 ) 振り子があたかも進行方向に直交する方向に力を受ける : 転向力 / コリオリ力 ( この力は小さいので 長時間 ( 例えば数時間以上 ) 長距離 ( 例えば 100km 以上 ) 動かなければ見えてこない ) http://www.gfd-dennou.org/library/gfd_exp/exp_j/index.htm http://ja.wikipedia.org/wiki/ ( 左写真 : パリ メチエ博物館 ) 10

地球の自転はなかなか実感できない http://kakuda.ed.niigata-u.ac.jp /semi/ob/thesis/99niwata_thesis2-21/ space/foucault/foucault.html http://ja.wikipedia.org/wiki/ ( 自転 ) 11

太陽系の描像の確定 [ 地学図表より ] 万有引力により統一的に理解できる : 惑星は太陽から距離の 2 乗に反比例する力を受けて楕円運動 公転方向は太陽自転方向に一致 ( 惑星の成因に関係 ) 軌道面はほぼ同一平面上 ( 冥王星は今や惑星ではない ) E. Halley: ニュートンと親しく プリンキピア 刊行促す ハレー彗星の軌道計算 ( 約 78 年周期 ) 世界初の科学観測船にて グローバルな磁場分布 測地 地表風系等の観測 12

宇宙は有限か無限か 定常か非定常か ニュートンの無限宇宙 万有引力の帰結 宇宙が永遠であるなら無限でなければならないなぜなら もしも宇宙に中心と端があれば 万有引力により宇宙は中心に向かって潰れてしまう 万有引力がある限り 宇宙に永遠は存在しないのではないか 無限の空間に物質が均等分布 あちこちで塊を形成するだろう 無数の大きな塊が散在 ( これが太陽や恒星の成因だろう ) 惑星や彗星による摂動 太陽系はやがて破壊される ( ニュートンへの反論 ) 中心や端はないが有限な宇宙は考えられる ( 二次元世界なら球面がその一例 ) 宇宙は永遠でなくてよく 膨張 収縮していてもいい 星 元素等の生成に十分な寿命さえあれば将来潰れてもいい 13

宇宙は有限か無限か 定常か非定常か 夜空のパラドックス ( オルバース 1826 年 ) 夜空が暗いのは大変不思議である もしも宇宙が永遠かつ無限で星が一様分布しているなら 夜空はまぶしく輝いているはずである なぜなら : 星と星のすき間には必ず別の星が見えるはず星のみかけの明るさは距離の2 乗の反比例星の数は距離の3 乗に比例 夜空の明るさは宇宙の大きさに比例するはず 14

宇宙は有限か無限か 定常か非定常か 夜空のパラドックス を解くには 仮定を再考すればよい 例えば : 宇宙は無限であっても永遠でない ( 有限の年齢を持つ まだ全ての光が届いていない ) 宇宙は永遠であっても無限でない 星は一様分布していない 有限個数しかない 他の要素? 星雲が遠くの星の光をさえぎっているのでは ( オルバース ) ( 雲は無限に光を吸収できるわけではない 再放射してしまう ) 20 世紀に入り解決 : 宇宙は一様に膨張していた 従って 寿命は有限となり 光が到達しうる範囲も有限 宇宙の地平線 ドップラー効果 ( 遠ざかる場合波長のびる ) による赤方偏移 ( 低エネルギー側へ ) 実は夜空は明るい ( 一様な背景放射の存在 ) 可視光 (0.4~0.8μm) では暗いが 赤外線 (1~100μm) や X 線 (0.1~1nm) ではほぼ一様に明るい X 線 : 遠くの銀河の中心核 赤外線 : 遠くの星の光 ( 過去の星形成の情報 ) ( なお ビッグバンの証拠であるいわゆる 宇宙背景放射 は電波領域 (1cm~1m) 星ではなく宇宙空間そのものが昔熱かった名残り ) 15

天体望遠鏡の発達史 (*: ガリレオ 中央公論社 ) ( 宇 : 宇宙論のすべて ) ガリレオ [ 左 *] とニュートン [ 右 宇 ] の望遠鏡 電波望遠鏡アレイ VLA[ 宇 ](26m 21km) ( 米 ニューメキシコ ) ティコ ブラーエの天文台 [ 宇 ] ハッブルのウィルソン山天文台 [ 宇 ] [ 地学図表 ] ハッブル宇宙望遠鏡 (1990~) 16 [ 野本 ハッブル望遠鏡の宇宙遺産 岩波新書 ]

宇宙の大きさ 恒星の距離を測る 年周視差の検出 (1838 年 ベッセルによるはくちょう座 61 番の星の観測 ) 地動説の確認とともに この星が 11 光年 (*) 離れていること判明 ( 現在では視差を用いた方法で 100~1000 光年先の星の距離を決定できるが 我々の銀河 ( 天の川銀河 銀河系 ) の半径が 50,000 光年 その先は?) 脈動変光星 ( 特にセファイド型 ) という特殊な星の性質を利用 ( 遠い星ほど暗い という性質を利用 ) 脈動変光星 : ある決まった周期 (1~1000 日 ) で膨張 収縮を繰り返し明るさ変化セファイド型 (<50 日 ): 平均の明るさ ( 絶対等級 ) と周期に簡単な関係があり天球上に脈動変光星を見つける 周期から経験則にて絶対等級決定 みかけの明るさより距離決定 1920 年 シャプレー カーティス論争 : アンドロメダ 星雲 の位置は天の川の中か外か 天の川の外と判明 天の川内 - 星雲 天の川外 - 銀河 と区別 (*) 光年 : 光が1 年に進む距離約 9.5 兆 km 17 [ 地学図表より ]

まとめー宇宙論 (2/4) ー 地球中心説 ( 天動説 ) から太陽中心説 ( 地動説 ) へ - 中世ヨーロッパの人々の 常識 社会通念 との戦い - コペルニクス ティコ ブラーエ ケプラーガリレオ ガリレイ ニュートン 地球の自転はなかなか実感できない - フーコーの振り子ー 太陽系の描像の確定 ニュートンの無限宇宙 と 夜空のパラドックス 天体望遠鏡の発達と 宇宙の大きさの測定 復習をするなら : 地球惑星科学入門 第 31 章 太陽系の成り立ちと運動 18

日食 2006 年 3 月 29 日にトルコで見られた皆既日食 2010 年 1 月 15 日に中国で見られた金環日食 [http://www.stargaze.co.jp/order3/solar/solar.html より ] ( 太陽を観察する際には専用の道具を 目がやけどします ) 2012 年 5 月 21 日 金環 日本ではトカラ列島 屋久島 種子島 九州中部から南部 四国の大部分 近畿地方南部 中部地方南部 東海地方の大部分 関東地方の大部分 東北地方南部で中心食が見られる他 全国で深い部分食 東京では 7 時 32 分頃 太陽高度 35 度で継続時間 5 分 4 秒の金環食となる ( 東京で金環食が観測出来るのは 江戸時代の1839 年以来 173 年ぶり ) 2012 年 11 月 14 日 皆既 オーストラリア北部から南太平洋を通過し チリの西方洋上で終わる ニュージーランド北島で食分 0.8 前後 2013 年 5 月 10 日 金環 オーストラリア北西部で始まり太平洋を赤道付近にかけて通過 ニューギニア島 ソロモン諸島で観測できる 最大食分 0.976 ハワイで食分 0.472 2013 年 11 月 3 日 金環北米大陸東沖からアフリカ大陸中部を通過 中部アフリカ ( ガボン コンゴ共和国など ) 東アフリカ( ウガン皆既ダ ケニア エチオピアなど ) で観測できる 2014 年 4 月 29 日 金環 南極大陸で金環食 オーストラリアで部分食が観測できる 最大食分 0.991 金環食影の中心線が南極上空を通過する非中心食 2014 年 10 月 23 日 部分 シベリア東部から北米の広い範囲で観測可能 最大食分 0.816 2015 年 3 月 20 日 皆既 グリーンランド アイスランドの南沖から北極を通過 ユーラシア北西部 北アフリカで部分食を観測できる 2015 年 9 月 13 日 部分 アフリカ大陸南端と南極大陸で見られる 2016 年 3 月 9 日 皆既 インドネシアを通過し北太平洋に至る 日本では全国で部分食が見られる 19 http://ja.wikipedia.org/ 日食

月食 日付 種類 2011 年 12 月 10 日 皆既 2012 年 6 月 4 日 部分 2014 年 4 月 15 日 部分 2014 年 10 月 8 日 皆既 2015 年 4 月 4 日 皆既 2017 年 8 月 8 日 部分 2018 年 1 月 31 日 皆既 2018 年 7 月 28 日 皆既 http://ja.wikipedia.org/ 月食 20