a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D

Similar documents
42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

Wolfram Alpha と数学教育 (数式処理と教育)

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

1 open source software, OSS OSS OSS OSS OSS OSS OSS OSS Linux

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

73,, $Jensen[1968]$, CAPM, Ippolito[19891,,, $Carhart[1997]$, ,, 12 10, 4,,,, 10%, 4,,,, ( ) $Carhart[1997]$ 4,,,,, Kosowski,$Timmennan\iota_

SEJulyMs更新V7

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

中国古代の周率(上) (数学史の研究)

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

研究成果報告書

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

Title ウェーブレットのリモートセンシングへの応用 ( ウェーブレットの構成法と理工学的応用 ) Author(s) 新井, 康平 Citation 数理解析研究所講究録 (2009), 1622: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

(Kazuyuki Hasegawa) Department of Mathematics Faculty of Science Science University of Tokyo 1 ff ( ) ([2] [3] [4] [6]) $\nabla$

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

平成26年度 学生要覧

$\mathrm{i}\mathrm{d}$ 15 ) Authorization ( ) Accounting ( ) UNIX Authentication ID Authorization Accounting $\sim-$ UNIX Authentication BSD Flat Data

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3


三石貴志.indd

untitled

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

1 2 3 マルチメディア, 分散, 協調とモバイル (DICOMO2013) シンポジウム 平成 25 年 7 月.,.,,.,. Surrogate Diner,., Surrogate Diner,, 3,, Surrogate Diner. An Interface Agent for Ps

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri


2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

『三才発秘』(陳文、1697年)と「阿蘭陀符帳」 : Napier's Bonesの日本伝来 (数学史の研究)



VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

Mathematica を活用する数学教材とその検証 (数式処理と教育)

USB 起動 KNOPPIX / Math / 2010 について (数式処理研究の新たな発展)

C-œI‡Ä‡¢

JAPAN MARKETING JOURNAL 114 Vol.29 No.22009

fiš„v8.dvi

カルマンフィルターによるベータ推定( )


ばらつき抑制のための確率最適制御

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ Wiki blog BrEdiMa 1 (NAKANO Yasuhiito) (MORIMITSU Daisuke) (MURAO Hirokazu) Univ.

DEIM Forum 2017 H2-2 Android LAN Android 1 Android LAN

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

福岡大学人文論叢47-3

Microsoft Word - deim2011_new-ichinose doc

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

JR東日本会社要覧

penalty cost. back log KM hq + cm + Q 2 2KM Q = h economic order quantity, EOQ Wilson 2

9_18.dvi

2 3

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

untitled

FA $*1$ $*$ 1, $*$2 : $*2$ : Takehiro Takano $*$ 1, Katsunori Ano*2 $*1$ : Graduate School of Engineering and Science, Shibaura Ins

text.dvi

1

Run-Based Trieから構成される 決定木の枝刈り法

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

八戸工大ドリームゲート16p.indd

IPSJ SIG Technical Report Vol.2014-ICS-175 No /3/14 Modified Stochastic Cell Transmission Model 1,a) 1,b) 1,c) Cell Transmission Model CTM Stoc

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

文部科学省科学研究費補助金特定領域研究B

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

36 581/2 2012

橡同居選択における所得の影響(DP原稿).PDF

,255 7, ,355 4,452 3,420 3,736 8,206 4, , ,992 6, ,646 4,

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi


Title KETpicによる曲面描画と教育利用 ( 数式処理と教育教育における数式処理システムの効果的利用に関する研究 ) : 数学 Author(s) 金子, 真隆 ; 阿部, 孝之 ; 関口, 昌由 ; 山下, 哲 ; 高遠, Citation 数理解析研究所講究録 (2009), 1624:

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

2

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

9 1: $O$,,, ( ), BT $2W6$ 22,, BT [7] BT, 12, $\xi_{1}=$ $(x_{11}, x_{12}, \ldots,x_{112}),$ $\xi_{2}=(x_{21}, x_{22}, \ldots, x_{212})$ $i$ $

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

Transcription:

a) \mathrm{e}\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -uac $\mathrm{f}$ 0$ 1373 2004 110-118 110 (Yoshinobu Tamura) Department of Information $\mathrm{y}$ (S geru (Mitsuhiro Kimura) Systems Faculty of Environmental Department of Social Systems Department of lndustrial and and Information Studies Engineering Faculty of $\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{u}\mathrm{l}\eta Systems Enginaering $\mathrm{h}\mathrm{o}8\mathrm{e}\mathrm{i}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}8\mathrm{i}\mathrm{t}\mathrm{y}$ Tottori University of Engineering Tottori University Engineering $\mathrm{y}\mathrm{a}\mathrm{m}\mathrm{a}\mathrm{d}\mathrm{a}\omega Environmental Studies Bmail: jp kim@khoeeia\epsilon jp E-mail E-mail tmura@hnkyoeu cjp 1 Java 1 IT (software reliabilty) (software fault ) ( ) CVS (Concurrent Versioning System)

$\mathrm{l}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}*\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{e}$ 11 [1 2 3] 1 $\mathrm{j}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}$ Java [4] Java Mathematica1 2 ^ [2] [3] 1 (software reliability growth model SRGM ) [5] SRGM $\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{g}\mathrm{e}\mathrm{n}\infty \mathrm{u}\epsilon$ ( Poisson pmaes NHPP ) differential $(_{8}\mathrm{t}\mathrm{o}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}$ equation (a) SDE ) [6] SRGM NHPP SRGM[7] ( NHPP ) $H_{dde}(t)$ $=$ $a \{\cdot\sum_{=1}^{n}\frac{p(1-e^{-bt})}{1+\mathrm{q}\cdot e^{-j}t}i\}$ ($a>0b_{1}$ $>0p:>0 \sum\cdot p:=1$ $(i=12 \cdotn)$) (1) $t$ $H_{dk}(t)$ $a$ $b_{:}$ $(i=12 \cdotn)$ 1 $p$: $(i=12 \cdotn)$ $\mathrm{r}\mathrm{r}*\mathrm{r}\mathrm{c}\mathrm{h}$ dfnm

112 (b) $(i=12 \cdot n)$ $(1-l_{\dot{*}})/l_{:}$ $l_{i}$ SDE SRGM[7] ( SDE ) $\mathrm{e}[n_{dde}(t)]$ $=$ $m_{\mathit{0}}[1- \{\sum_{1=1}^{n}\frac{p_{\dot{l}}e^{-b}\cdot{}^{t}(1+\mathrm{q})}{1+\mathrm{q}e^{-bt}} \}e$\sim (2) $N_{dd\epsilon}(t)$ $t$ (2) $m0$ $b\dot{}(i=12 \cdot n)$ 1 $p_{*}$ $(i=12 \cdots n)$ $(i=12 \cdot n)$ $(1-\iota_{:})/l_{*}$ $l_{:}$ $\sigma$ (1) (2) $n$ $[8 9]$ $\mathrm{s}$ $p_{\dot{l}}(i=12 \cdotn)$ SRGM [10] (2) SDE 3 ( ) $[11 12]$ 31 2 SDE 1

$c_{3\mathrm{c}}$ : 113 $c_{1i}$ : $c_{2:}$ : $c_{1\mathrm{c}}$: c2 : 1 $(c_{1\dot{*}}> 0)$ $(c_{2\dot{l}}> 0)$ 1 $(c_{2\mathrm{c}}>0)$ $(c_{1\mathrm{c}}>0)$ 1 $(c_{3\mathrm{c}}>0 c_{3\mathrm{c}}>c_{1}\dot{} c_{3\mathrm{c}}>c_{2\mathrm{c}})$ NHPP SRGM [5]: $\mathrm{s}$ $H(t)$ $=$ $\frac{a(1-e^{-bt})}{1+c\cdot e^{-bt}}$ $(c>0)$ (3) $b$ $a$ 1 $c$ $l$ $(1-l)/l$ ( ) $(i=12 \cdot n)$ ( $t$:-! $G_{i}(t:)=\{$ $c\mathrm{a}_{\dot{l}}\{e^{b(t-}" t\cdot)- 1\}(t:>tdi)$ 0 $(t:\leq t_{d:})$ (4) $c_{3}\cdot(> 0)$ $t_{d\dot{l}}$ $(td_{\dot{l}}> 0)$ $k_{\dot{*}}(>0)$ $C_{1}(t:)=c_{1:}H_{\dot{l}}(t:)+c2\dot{*}t:+$ G$:(t:)$ $(i=12 \cdotsn)$ (5) $H\dot{}(t:)$ NHPP SRGM $\mathrm{s}$ $\mathrm{t}$ SRGM $tr_{1}$ $=t:$ $Cost(N_{d\ }(t)t)= \sum_{1=1}^{n}$ c-(ti)+c2 t+clcndde(t)+c3c $\{m_{0}-n_{d\ }(t)\}$ (6) $N_{d\ }(t)$ $Cost$ (\sim (t) $t$) (6) Cost(Ndd\epsilon (t) $t$) (ti)+c2 t-(\tilde -c\sim )\sim (t)+\mbox{\boldmath $\tau$}nocs& (7) $= \sum_{*=1}^{n}c\cdot$ $N_{dd\mathrm{e}}(t)$ (2) SDE $\mathrm{p}\mathrm{r}[n_{dd\mathrm{e}}(t)\leq n]=\phi(\frac{\log+\log[\sum_{--1}^{n}\frac{pe^{-bt}(1+\alpha)}{1+\mathrm{q}e^{-b_{\ell}t}}]}{\sigma\sqrt{t}}\cdot\cdot) $ (8)

114 Cost( (t) $t$) (7) $N_{dde}$ $\sum C_{\dot{\iota}}(t_{i})n+c_{2\mathrm{c}}t+m_{0}c_{3c}-Cost(N_{dde}(t) t)$ $N_{dde}(t)= \frac{i=1}{c_{3c}-c_{1\mathrm{c}}}$ (9) (8) (9) $C=-n(c1\mathrm{c}-c_{1\mathrm{c}})+(c_{2\mathrm{c}}t+m_{0}c_{3\mathrm{c}})$ (10) Cost $(Nu_{\epsilon}(t)t)$ $\mathrm{p}\mathrm{r}[cost(n_{d\ }(t)t)\leq C]$ $=$ $1-\Phi(\{$ $\log$ \vdash (c3o-c1 )/{$\mathrm{c}-(\sum_{*=1}^{n}c_{\dot{l}}(t_{1})+c_{2c}t+m_{0}c_{1\mathrm{c}})\}]$ $+$ $\log[\sum_{*=1}^{n}\frac{p_{\dot{l}}e^{-b}\cdot{}^{t}(1+\mathrm{q})}{1+\mathrm{q}e^{-bt}}\cdot]\}/\sigma\sqrt{t})$ (11) (6) $\mathrm{e}[cost(n_{dde}(t) t)]=\cdot\sum_{=1}^{n}$ C $(t:)+c_{2\mathrm{c}}t+c_{1\mathrm{c}}\mathrm{e}$ [Ndde $(t)$ ] $+c\epsilon_{\mathrm{c}}(m_{0}-\mathrm{e}[n_{d\ }(t)])$ (12) 32 (1- $001\alpha)/2$ $(1+001\alpha)/2$ $C_{U}$ (t) $=$ $\mathrm{e}[cost(n_{d\ }(t) t)]+\beta_{1}(t)\sqrt{\mathrm{v}\mathrm{a}r[cost(n_{dd\mathrm{e}}(t)t)]}$ (13) $C_{L}$ (t) $=$ $\mathrm{e}$[cost(ndde (t) ] $t)$ $-h(t)\sqrt{\mathrm{v}\mathrm{a}\mathrm{r}[cost(ndde(t)t)]}$ (14) $C_{U}$ (t) $C_{L}$ (t) $\beta_{1}(t)$ (t) H 1 $(1\pm\alpha)/2$ $T^{*}$ $T^{*}$ (12) $t=t^{l}$ $C_{U}$(t) $C_{L}(t)$ $t=t_{u}^{*}$ $t=t_{l}^{*}$ $T_{L}^{*}$ $T_{U}^{*}$ $C_{U}$ (t) (t) $C_{L}$ 4 ( ) : 2714 Ksteps : 404 Ksteps : 85% 9 $tk$ 41 $\hat{m}0=$ 42573 $\hat{b}_{\dot{l}}=$ 022526 $\hat{b}j=0093545\hat{\sigma}=0047806$

$\equiv$ $\frac{\sqrt{\mathrm{v}\mathrm{a}\mathrm{r}[n_{d\ }(t)]}}{\mathrm{e}[n_{d\ }(t)]}$ $\mathrm{o}s\cdot--\cdot\cdot-\cdot\cdotsarrow\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdots\cdot-\overline{-}\ldots\cdot\cdot\cdot-\cdot\cdot\cdot\cdot\cdot-\cdot\cdot\cdot\cdot\cdot\underline{-\cdot}\cdot\frac{}{-}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\ldots\cdot\cdot\cdot\cdot \mathrm{i}\backslash \ldots- \cdot\cdot\ldots\ldots-\cdots\cdot\cdot\cdot\cdot\cdot\overline{!}\cdot\cdot\cdot\cdot\cdot-\cdot\cdot\cdot\cdot\cdot-\cdot\cdot\cdot\cdot\cdot\cdot\underline{-\cdot \cdot}\cdot\cdot\cdot\cdot\frac{}{\sim-}i\ldotsj\mathrm{i}\backslash -\mathrm{i}\cdot\cdot\frac{--\overline{-}}{\mathrm{i}--\cdot\overline{-}}i\cdot-\cdoti---\ldots i\cdot-\cdot\overline{-}\cdots\cdot\cdot\cdot \mathrm{i}\wedge\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ $0^{\cdot} \cdot\cdot\cdot\cdot\ldots\cdot\cdot\cdot1^{\cdot}0^{\cdot}\cdot\cdots\cdot\cdot\cdot 1^{\cdot}5-i:-\cdot\ldots-:\cdot:\{\cdot:\cdot\cdot:::\underline{i}\ldots-:::i \cdot--\cdot-\underline{}-\cdot\underline{i}--\cdots\cdot:\cdot\cdot\cdot\cdot--:\cdot\cdot-i-\cdot\cdot\frac{i}{-}-i--\cdot i\ldots\ldots\cdot\cdot\cdot:::-\cdot:\cdot:::::\underline{-}$ 115 $l_{:}$ $l_{:}=085$ $l_{n+j}=$ $015$ (i $=12$ $n$) =03 $p_{n+j}=07$ $\cdots$ $\overline{m_{d\ }}(t)(=\hat{m}0-\overline{n_{d\ }}(t))$ 1 $\mathrm{v}\mathrm{a}\mathrm{r}[m_{dk}(t)]$ $=$ $\mathrm{v}\mathrm{a}\mathrm{r}[n_{dde}(t)]$ $=$ $m_{0}^{2} \{\sum_{1=1}^{n}\frac{p_{\dot{*}}e^{-b}{}^{t}(1+\mathrm{q})}{1+\mathrm{c}_{1}e^{-bt}} \cdot\}^{2}e^{\sigma^{2}}{}^{t}(e^{\sigma^{2}t}-1)$ (15) $CV(t)$ $=$ $ \cdot\frac{m0\{\sum_{=1}^{n}\frac{\mathrm{a}^{e^{-b}{}^{t}(1+\mathrm{q})}}{1+c_{*}e^{-b_{-}t}}\}^{2}e^{\sigma^{2}}{}^{t}(e^{\sigma^{2}t}-1)}{1-\{\sum_{i=1}^{\mathfrak{n}}\frac{pe^{-b}{}^{t}(1+c_{\dot{*}})}{1+\mathrm{q}e^{-bt}}\}e^{*^{2}t}} \cdot \cdot\cdot$ (16) (mean time betwoen software failurae MTBF ) MTBF (Instantaneous MTBF) MTBF (Cumulati MTBF) $MTBF_{I}(t)$ $=$ (17) $\frac{1}{\mathrm{e}[\frac{dn_{4\ }}{dt}[perp] t\mathit{1}]}$ $MTBF_{G}(t)$ $=$ $\frac{t}{\mathrm{e}[n_{dd\epsilon}(t)]}$ (18) [9] (17) (18) MTBF 4 3 2 $: \cdot:--\cdot\cdot:\ldots\cdot\cdot-i\cdot\cdot\cdot\cdot\cdot\cdot---\underline{i}\overline{\cdot \mathrm{i}\cdot i\cdot}\ldots\overline{i}\cdot\cdot \mathrm{i}:\cdot-\cdot\cdot\underline{-}\cdot\cdot\cdot ii\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\overline{--\cdot}\cdot\cdot\cdot\cdoti\cdot-\cdot\overline{\underline{i}\cdot}i^{-}\cdot\cdot\overline{-}-\cdots\cdot\cdot\cdot\cdot\cdot\cdot:\cdot:^{\underline{i}\cdots\cdots\frac{}{-}i\frac{\wedge-}{--}\frac{-}{-}\ldots-}\cdot:\cdot\cdot\frac{--}{j}-\cdot\cdot\cdot\cdot\cdot\frac{}{\underline-}:\cdot\cdot\cdot\cdot\cdot\cdot\cdot\frac{}{\underline-}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot-\cdot\cdot\cdotarrow--\cdot\cdot\cdot\cdot--\cdots\cdot-\dot{i} \cdot-\backslash \ldots\cdot$ $ \cdot:\overline{\underline{--}}:\cdot:-i_{\frac{-}{\ldots-}}\cdot\cdot\cdots\cdot\cdot\cdot\cdot\cdot\cdot\cdots\cdot\cdot::_{\overline{i}}\cdot\cdot\overline{\underline{i}}-\ldots\cdot-\cdot\cdot::-\ldots-\frac{-}{!}\cdot-\cdot\cdot-\cdot\cdot\cdot\cdot-\cdot\cdot\cdot\cdot---\cdot\cdot\overline{-}\cdot\cdot\cdot i\overline{r}\cdot\cdot\cdot-\cdot- -\cdot\cdot\cdot\cdot\vee--\ldots\ldots i\backslash \mathrm{i}-\underline{-}\cdot-\mathrm{i}-\cdot\cdot\cdot-\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\frac{-}{-}\cdot\cdot\cdot\cdot\cdot--\overline{\underline{-}}\cdot\ldots\cdot\ldots-\cdot\cdot\cdot\cdot\cdot i\sim\ldots\cdot\cdot\cdot:\frac{\wedge-}{\prime\dot{i}}\cdot\cdot\cdot\cdot\cdot\cdot-\cdot-$ $2 \cdot\cdot\cdot\cdot\cdot\cdot-\cdot\cdoti\cdot\cdot\frac{-}{-}\cdot\cdot\cdot:\cdot\cdot\cdot-\cdot\cdot\cdot:\cdot\cdot\cdot\cdot\overline{} \cdot\cdot \mathrm{i}\cdot\cdot\cdot\cdot\cdot\overline{-}-\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot i\cdot\cdot:\cdot-\cdot\cdot\cdot\cdot\cdot\cdot\cdot\ldots\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot i\wedge\ldots\cdot\cdot\cdots\ldots\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\ldots\cdot\frac\underline{\frac{-}{-}}\frac{\overline{-}--}{--}\cdot\cdot\cdot\cdot:-\cdot\cdot\cdot\overline{-}\cdot\cdot\cdot\cdot\frac{\dot{j}}{}\cdot\cdot\cdot----\overline{--}\cdot\cdot\cdot\cdot\frac{\wedge-}{-}\cdot\dot{\gamma}-\frac{-}{\underline-}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ 0 1: 2: 42 31 1 T $c_{11}=1$ $c_{12}=1$ $c_{13}=$ I? $c_{14}=1$ : $c_{1}\epsilon=1$ $c_{16}=1$ $c_{1}\tau=2$ $c_{18}=1$ $c_{19}=2$ $c_{21}-$ -2 $c_{22}=2$ &$=2 $4=2$ $c_{25}=2$ $C\Re=2$ $\Phi \mathit{7}=4$ $\Phi\S=2$ \dagger $c_{1\mathrm{c}}=10$ $e_{2\mathrm{c}}=20$ $c_{3\mathrm{c}}=50$ $c_{29}=4_{t}$

$8\circ>$ $\cdot\cdot\cdot\cdot i\cdot\ldots\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\dot{}\ldots\cdot\cdot\cdot\cdot\cdot\dot{}\dot{}\cdot\dot{}\cdot\cdot\cdot-i\cdot\cdot \mathrm{i}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ $\cdot-\cdot-\dot{}\ldotsi\cdot\ldots-\cdot\mathrm{i}\cdot\dot{}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$ $)$ $\cdot 3^{\cdot}\cdot$ $\cdot\dot{\cdot}\cdot\ldots\cdot\cdotj\cdots\cdot _{\dot{}} \cdot$ $\cdot\overline{-}----^{\mathrm{f}}-----\cdot-\cdot-\cdot---\ldots i_{-j l}- - \cdot-\ldots-\cdot----\backslash \cdot\backslash --\cdot i---$ $ \cdot----\cdot\cdot-\overline{-}--\wedge\cdot\wedge-\cdot\cdot--\sim------\cdot-\overline{-}-\cdot\cdot\cdot\cdot--\mathrm{c}_{\mathrm{i}}-\mathrm{i}-\cdot-- -\cdot\} ----\cdot\cdot-i_{\underline{-}}^{-}-\cdot\ldots-\ldots\cdot\cdot\cdot- \frac{i}{-}\cdot--arrow- - \cdot\cdot \mathrm{i}\cdot\cdot\cdot--j -\cdot--\overline{-}\cdot--$ $1 \cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot!\mathrm{t}i^{:}\cdot\cdot$ $\dot{}$ \cdot--_{}\cdot---\backslash \overline{}\ldots\ldots$ $\overline{_{\mathrm{i}\mathrm{i}}\dot{}} \dot{!}*-\cdot-\cdots\cdotl!1\mathrm{i}1\prime^{\prime^{-\mathrm{i} }}\mathrm{i}_{!}^{1} \cdot$ $)$ $^{}\mathrm{i}\cdot\cdot\cdot\cdot$ $\mathrm{i}\mathrm{i}$ $\dot{}\cdot\cdot\cdot\cdot\ldots\ldots\ldots$ $\mathrm{i}$ 116 0 1 } 00 10 20 25 00 10 $\mathrm{y}\mathrm{s})15$ $\mathrm{y}\mathrm{s})15$ } 25 3 $c\mathrm{c}_{}$ 3: 4: MTBF MTBF $\cdot\cdot$ 3 - - $\ldots$ $\dot{}\cdot$ $\ldots\ldots\ldots\ldots\cdots\cdot$ $\ldots\ldots\ldots\ldots\ldots\ldots\ldots$ 1 12 $u$ 23 $-\cdot\cdot $ $j\cdot\cdot\cdot \mathrm{i}\cdot$ $\cdot!$ $2S$2 2 $ \cdots\cdot\cdot---\backslash $-$ $-\backslash \backslash$ $ \backslash \cdot-$ ---- - -: $\cdot\ldots\ldots\ldots\cdot\cdot \mathrm{i}i\cdot\cdot\cdot\cdot$ $\mathrm{i}$ $:\mathrm{i}!\ldots\cdot\cdot$ $\cdot $$\cdot\cdot$ $\cdot\cdot$t $\cdots\cdots\ldots$ : $\ldots\ldots^{}$ 00 1035 1 : 5: 6: 41 5 6 6 $T^{*}=34671$ 24106 005 095 % 6 % $\overline{c_{u}}$ $\overline{c_{l}}$ (t) (t) $T_{U}^{l}=40652$ $T_{L}^{*}=28070$ 90% $C_{U}(T_{U}^{*})=25256$ $C_{L}(T_{L}^{*})=22837$ 5 1 Java $\mathrm{j}/\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{k}$ Mathematica Mathematica $n$ 100 Mathematica Java

$\mathfrak{j}j-i4\mathrm{u}1\mathrm{t}\mathrm{o}\alpha\infty\prime \mathrm{w}\mathrm{p}\mathrm{q}*[] \mathit{0}*\mathrm{p}\varpi\alpha*\cdot\prime 4\mathrm{Q}*\mathrm{t}$ $ -\mathrm{s}-_{l} \mathrm{a}\dot{\mathrm{r}}$ Dmn\mbox{\boldmath $\cdot\wedge\dot{\mathrm{i}}$ r4&h Poin 4W$ $\overline{\mathrm{i}\lrcorner \mathrm{r}f\prime}\underline{-\mathrm{j}}\mathrm{j}^{\cdot}$ 117 Mathematica $\mathrm{k}$ J/Lin Ja Ja Mathematica Mathematica step 1 step2 NHPP SDE 2 NHPP SDE Mathematica Kernel $stc\}p$ 3 NHPP NHPP SDE SDE 7 $ST_{\mathit{4}}1f \Gamma for$ JJDE $\backslash \forall \mathrm{r}\<\#\mathrm{e}s\mathit{1}^{1}d\prime l\hslash)\mathrm{f}\dot{\mathrm{l}}\acute{\mathrm{t}}^{\tau\cdot _{d}}" \mathrm{r}n\mathrm{i})-\dot{t}\backslash \cdot \mathrm{e}\ \mathit{0}^{\eta\prime} $ r $\theta^{\mathrm{v}}h;_{\overline{r}*}$ $rg- hr\mathrm{p} *s\cdot x\cdot \mathrm{r} g\urcorner$ ss?d:4$lrn$ $\ ^{\rho_{(\#\theta J\}\mathrm{p}_{i\dot{\iota}^{1}\mathrm{h}\mathrm{A}\iota\zeta frn\mathit{1}h\dagger/\epsilon_{\mathit{7}_{\grave{\iota}\}_{}f_{\overline{d}}}}}\cdot J\cdot " \cdot\acute{ }\cdot$ ) 2 $\iota$l\sim $\iota_{4}$d jp $n$$r$ J $p_{\hslash \mathcal{v}1^{\vee}}\cdot O?t$rJ \tilde $\mathrm{h}\mathrm{m}v$ $\mathrm{r}\prime ucdot\prime \mathrm{m}\cdot-\hslash\cdot \mathrm{u}\mathfrak{g}\mathrm{n}[]$ $1t\mathrm{o}\cdot 1$ \-N\mbox{\boldmath $\alpha$}m r*poin Pm M0b1 : Pkdle $\mathrm{s}1\mathrm{o}\mathrm{d}\mathrm{m}-\mathrm{d}$ $\alpha$}*tqinmohl $\mathrm{i}$ $ $ $\mathrm{p}\mathrm{n}\alpha\cdot$ $\mathrm{i} - [searrow];-$ II -II- $\mathrm{p}-\cdot\cdot Xonmrm ] $\mathrm{s}\alpha-\dot{\mathrm{r}}\mathrm{m}$ $*-\cdot*\mathrm{l}\mathrm{b}\mathrm{q}\alpha\dot{\mathrm{n}}\prime $- \mathrm{f}\mathrm{b}\alpha \mathrm{b}\mathrm{s}\mathrm{b}\epsilon 4[] \mathrm{t}\dot{\mathrm{r}}\mathrm{d}$ $\sim \mathrm{g}\mathrm{q}*[] \mathrm{n}*\mathrm{n}\mathrm{o}\mathrm{u}$ $ $ $\mathrm{m}\mathfrak{g}\mathrm{d}[] t$ 0$-Prwn d $*u*1$ \infty inuobl 7: 6 lt\^o SRGM $(\mathrm{c})(2)$ ( 15510129)

$\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}n$ European and \mathrm{u}\mathrm{s}$ cost 118 [1] A Umar Distributed Computing and Client-Serv er Systerns Prentice Hall New Jersey 1993 $\sim$ [2] / \sim 1998 $\text{ } $ [3] / 1998 [4] S Holzner Java Pmgramming: Black Book Impress Tokyo 2000 $\mathrm{r}$ [5] 1994 [6] L Arnold Stochastic Differential Equations-Theory and Applicalions John Wiley & Sons New York 1974 [7] u 3 pp 113-118 2002 11 [8] M Lyu (ed) Handbook of Software Reliability Engineering McGraw-Hm New York 1996 $u$ [9] S Yamada M Kimura H Tmab and S Osaki Soflware reliabilty measurement and assessment with stochastic differential equations IEICE Trans Fundamentals vol E77-A no 1 pp 109116 Jam 1994 $\mathrm{t}\mathrm{m}\mathrm{u}\mathrm{r}\mathfrak{u}$ [10] M Uchida Y S Yamada Software Reliability Analysis and Optimal Release Problem Based on a Flexible Stochastic Differential Equation Model in Distributed Development Environment Proceedingp of the 8th ISSAT International Conference on Reliability and Quahty in Design Honolulu Hawaii USA pp 12-16 August 7-9 2003 [11] S Yamada and S Osaki Cost-reliability optimal release policies for a software system IEEE Trans Reliability vol R-34 no 5 pp 422424 Dec 1985 $8\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{m}\infty [12] S Yamada and S Osaki Optimal software release policies with and reliability require J Operational Research vol 31 no 1 pp 4651 July 1987