PowerPoint プレゼンテーション

Similar documents
2016 年熊本地震の余震の確率予測 Probability aftershock forecasting of the M6.5 and M7.3 Kumamoto earthquakes of 2016 東京大学生産技術研究所統計数理研究所東京大学地震研究所 Institute of Indus

PowerPoint Presentation

7-1 2007年新潟県中越沖地震(M6.8)の予測について


Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

浜松医科大学紀要

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

dvi

<95DB8C9288E397C389C88A E696E6462>

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

untitled

2 ( ) i

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

_念3)医療2009_夏.indd

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

第1図 Fig. 1 熊本県中部地域の地震活動 2010 から 2016 年 4 月 14 日 M6.5 熊本地震発生時までの時間区間で M 1.0 の地震に対して ETAS モデルを適用した解析結果 実時間 パネル対の左側 と ETAS による変換時間 対 の右側 に関する理論累積曲線 赤線 と実

udc-2.dvi

kiyo5_1-masuzawa.indd

4/15 No.

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

鉄鋼協会プレゼン

京都大学防災研究所年報第 60 号 A 平成 29 年 DPRI Annuals, No. 60 A, 2017 Generating Process of the 2016 Kumamoto Earthquake Yoshihisa IIO Synopsis The 2016 Kumamoto e

untitled

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット


Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth


A

1 Tokyo Daily Rainfall (mm) Days (mm)


Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

Vol. 26, No. 2, (2005) Rule of Three Statistical Inference for the Occurrence Probability of Rare Events Rule of Three and Related Topics Manabu

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

On the Detectability of Earthquakes and Crustal Movements in and around the Tohoku District (Northeastern Honshu) (I) Microearthquakes Hiroshi Ismi an

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

Public Pension and Immigration The Effects of Immigration on Welfare Inequality The immigration of unskilled workers has been analyzed by a considerab

28 Horizontal angle correction using straight line detection in an equirectangular image

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

02-量子力学の復習


0-

2017 (413812)


JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna


A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

2016 年熊本地震前の九州地域の地震活動および余震活動の統計的モニタリング Statistical monitoring of seismicity in Kyushu District before the occurrence of the 2016 Kumamoto earthquakes

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

Microsoft Word doc

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

1. 2. (Rowthorn, 2014) / 39 1

: , 2.0, 3.0, 2.0, (%) ( 2.

seminar0220a.dvi




A comparative study of the team strengths calculated by mathematical and statistical methods and points and winning rate of the Tokyo Big6 Baseball Le

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

3 - 7 松代アレイ震源による長野県北部の地震活動の特徴: 時空間変化

1 # include < stdio.h> 2 # include < string.h> 3 4 int main (){ 5 char str [222]; 6 scanf ("%s", str ); 7 int n= strlen ( str ); 8 for ( int i=n -2; i

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

EU

Microsoft Word - mitomi_v06.doc


一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

yasi10.dvi

29 Short-time prediction of time series data for binary option trade

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

ohpmain.dvi

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

JFE.dvi

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

201711grade1ouyou.pdf

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

Transcription:

次の地震のマグニチュード予測と評価 Magnitude forecasts of the next earthquake and evaluation 統計数理研究所 The Institute of Statistical Mathematics CSEP の地震予測検証実験が始まって 10 年以上経つ その主な取組みは空間領域 ( 例えば 3 ヶ月 1 年 5 年間における予測 ) および時空領域 ( 日々の予測 ) における確率的予測を行い それらの性能を評価することである CSEP の主な目的は 様々な地震活動モデルの開発を促進し各地の通常の地震活動の標準的な相場を確立することで 異常現象に基づいた大地震の予測の各種提案に対する客観的評価のインフラを整備することである これまでのところ CSEP の殆どの提案モデルの地震マグニチュード ( 以下 M と記す ) 予測は実験全域および全期間にわたって同一の b 値の Gutenberg-Richter(G-R) 則に基づく独立分布系列を仮定している これは実際には二重の意味で単純であると考える 第 1 に G-R 則の b 値は地域性がある このような b 値モデルは CSEP で唯一検証中である 1) 第 2 に G-R 則の b 値や一般の M 分布は地震活動の履歴に依存する可能性がある 本報告では前震群, 群発地震群, 本震余震群の統計的判別による方法 2) を参考に CSEP の検証規格に則って過去の震源データから逐次 次の地震の M の確率予測を試み b = 0.9 の G-R 則 ( 以下 基準 G-R 則と記す ) と比較し検証した 1

先ず M 4 の気象庁地震カタログから Single-link 法 3) で群分けを行い, 第 1 図にある様 に群内の M 列がそれまでの最大 M より 0.5 以上の飛躍 ( M 0.5 ) がある毎にリセットし 予測 M 確率分布を再計算する すなわち 先頭の地震 ( 孤立地震を含む ) に関しては基準 G-R で予測し 群の 2 番目の地震が M 0.5 の大きな地震である確率は p 2 c = µ ( x, y ) 1 1 n 3 番目以降の地震が M 0.5 の大きな地震である確率 pnc は図 107 頁中の式で計算する そ して各時点での M の予測確率密度分布は第 112 頁図の式 Ψ ( M M1,, ) で与えられている 各時点での M 予測の性能は図 11 頁 8 の最下行にある対数尤度比で比べることができる 大規 模なクラスターの地震は殆ど負の情報利得スコアが得られ 小さいサイズのクラスターは 一般に正の利得を取る 85% 以上のクラスターは高々 4 つの地震しか含まないので クラス ターの 5 番目以降の地震については基準 G-R で予測する事にすると 全体としてこの予測 は基準 G-R より優位であることが分かる ((14 第 3 頁図 ) ) この様に 様々な前震型アルゴリズムに対応する M 配列の分布を単一の G-R 型から適切 に広げることは 大地震の確率利得を高め 有用である M n 10 頁 2 参考文献 1)Ogata, Y., 2011, Earth, Planets Space, 63, 217. 2)Ogata, Y., Utsu, T. and K. Katsura, 1996, Geophys. J. Int., 127, 17. 3)Ogata, Y., Utsu, T. and K. Katsura, 1995, Geophys. J. Int., 121, 233.

3 地震マグニチュードの予測と評価 尾形良彦統計数理研究所

4 All Japan California Italy { an event in a bin t t + t x x + x y y + y M M + M Ht Ft} Ht { ( tj, xj, yj, M j); tj t } Pr [, ] [, ] [, ] [, ], λ(, txym,, Ht, Ft ) t x y M t 時刻 ; (x, y) 経度緯度 ; M マグニチュード ; = < 地震の発生履歴 ; Ft その他データ { } Pr an event in[ t, t + t) [ x, x + x) [ y, y+ y) Ht λ(, t xy, Ht ) t x y Iso-contour of λ(t, x, y Ht) Space-Time ETAS model K Qj( x xj, y yj) λ θ (, txy, Ht ) = µν ( xy, ) + d p + M j { jt : }( ) j t t tj c e α < + x x 1 j where Qj( xy, ) = ( x xj, y yj) Sj y yj q latitude longitude

0 (, ) 1 K x y x x j j j y yj S x xj y y j j (, t x, y Ht ) = ( x, y) + p( xj, yj) ( xj, yj)( M j M c ) { j; tj < t} ( t tj + c) e α λ µ Rates of M 4 event during the 2016 Kumamoto sequence M 4.0 (a) (b) (c) M6.5 4/14 00:00 M7.3 4/15 01:03 (, ) (, ) (d) M6.4 4/14 22:26 4/16 13:25 t + d q 5 event/day/100 km^2 event/day/100 km^2

地震マグニチュードの予測モデル 6 基準モデル : Gutenberg-Richter 則 (b= 定数 ~ 0.9) GR GR a b( M M ) c ( M ) = 10 Gutenberg-Richter 則 (b= 位置依存, Ogata, 2011 EPS) axy (, ) bxy (, )( M M ) c ( M xy, ) = 10 履歴に依存するマグニチュード分布 但し. ( H ) Γ( M Ht ) dm = P M < Magnitude M + dm t { (,,, ); } H = t x y M t < t t j j j j j

1926-1993 M 4 d = + ( c ) 2 2 ST space time 0.3 (or 33.33km) c = 1 o / month 1 km / day x x 1926-1993 Isolated or the first M 4 earthquake 7 x First earthquake Probability of the first event of the cluster or isolated event will be FORESHOCK 1% Probability 群れの先頭 ( 孤立地震を含む ) が前震である確率の地域性 10%

8 d = + ( c ) 2 2 ST space time 0.3 (or 33.33km) 1995 2011.3 M 4 Ordinary time (days) Order in number (events)

SPACE ln 1 2 3 100% 時間経過ク0% Probability of ラthe first event Aftershocks of the cluster スor isolated event タwill be Swarms FORESHOCK ーForeshocks F c10% の時間差 ( 日 ) 前µ ( x 震1, y1) A 10% 確率1% S F 予F 測震央間距離 (km) p c 0.1% A S F 単位立方体への変換 ( τ 0.01% i, j, ρi, j, γi, j) マグニチュード差 3 3 3 2 5 10 20 50 100 1 pc 1 k k k = 1 µ ( x1, y1) ln + a1 + bkγi, j + ckρi, j + dkτi, j pc #{ i< j} µ ( x, y ) i< j k= 1 k= 1 k= 1 1 1 4 5 Ogata et al. (1995, 1996; GJI ) Ogata & Katsura (2012, GJI ; 2014, JGR) (1 ケ月 ) 予測と実際の結果 1994-2011 M 4 実際の前震型その他 クラスター内の地震の順番 9

Segmentation of Single Link Clusters ΔM 0.5 ΔM < 0.5 ΔM 0.5 ΔM 0.5 10 p = cn Sub-clusters Sub-clusters 地震群 c のn 番目の地震でマグニチュードが0.5 以上の更新確率 1 p 1 µ ( x, y ) 1 ln p < 1 1 3 3 3 cn k k k = ln + µ ( x a1 bkγi, j ckρi, j dkτi, j cn #{ i j} + + + 1, y1) i< j< n k= 1 k = 1 k= 1 1% 地震群の先頭が前震である確率 µ ( x, y ) 1 1 10% SPACE 1 Sub-cluster 2 4 3 時間経過 5 係数 from Ogata, Utsu and Katsura, 1996, GJI k ak bk ck dk 1 8.018-33.25-1.490-10.92 2 62.77 2.805 295.09 3-37.66-2.190-1161.50

{ } ( n c) Magnitude Gap : M = max Mk ; k = 1,, n in cluster c + 0.5 Probability of M Mmax+0.5 of the next magnitude; n c = > If ( tn+ 1, xn+ 1, yn+ 1)is connected to c, 1 ( M ) 10 1 10 Ψ ( M M1,, M n) = (1 pnc ) ( nc ) + p dm bm bm ( nc ) ( n c) ( Mc, M ) ( M, ) ( ) M nc M bm bm 10 dm ( nc ) 10 M M c 11 ( n c) { n+ 1 } p P M M in c Probability density Probability density Ψ ( M ) M,, 1 M n log Probability distribution p n c p n c M ( n c) Magnitude Otherwise, the reference model M ( n c) Magnitude M ( ) 1 10 10 ( ) bm Ψ M = ( Mc, ) M M c ( n c) bm dm Magnitude log likelihood-ratio = information gain: log LL 0 = # c log Ψ ( n) c( Mn+ 1 Mc ) Ψ ( M ) c n= 1 c n+ 1

12 All Japan 1994 2011 M 4 log Ψ ( n) c( Mn+ 1 Mc ) Ψ c ( M ) n+ 1 = Information gain score per earthquake (+ signs) + = score/event (x500) magnitude All clusters c

Single-linked clusters used for the learning 1926-1993 Log cumulative number of clusters 100% 1 2 3 4 5 6 7 8 9 10 Number of cluster members Forecasts 13 Single-linked clusters used for the experiments1994-2011 Probability of foreshocks in log scale 10% 1% 0.1% 0.01% 1994-2011 M M c = 3.95 Actual foreshock cluster Other type cluster 2 5 10 20 50 100 Order n of earthquake in a cluster c

Information gain scores; All Japan 1994 2011, M 4 14 + = score/event (x500) magnitude All clusters c + = score/event (x100) magnitude Cumulative Information gains Only for thefirst 4earthquakesin each cluster cumulative scores (x1) Order in number (events)

Field et al. (2017, BSSA) ETAS (no fault) 15 UCERF3-ETAS

まとめと提案 16 (1) CSEP プロジェクトの次の課題は 地震発生履歴の特徴および関連地球物理的異常現象に関係するマグニチュード予測モデルを探求することである 地震発生特徴には 地震マグニチュード列の変化 前震判別に有効な時空間クラスタリングの集中性の強さ 地震の静穏化と活発化 および先駆的群発地震活動などが含まれる (2) 警報型の大地震の予測は 経験的な成功率の統計を考慮してマグニチュードの分布でモデル化することもできる これらは 前駆的異常情報に基づくマグニチュードの予測アルゴリズムとして提案すれば それらを独立 G-R 分布を基準モデルとして情報利得を比較できる (3) 既存の CSEP の時間 空間 マグニチュードの対数尤度スコアを用いて試験を総合的に実施すべきである しかし CSEP で採用されている従来のマグニチュードテストでは マグニチュード予測の体系的な違いには関係していない テストは モデルを改善するための診断目的で使用する必要があるため マグニチュード頻度に関する対数周辺尤度の局所的なスコアまたは対数の条件付き尤度によるテストを実行できる

All Japan 1994 2011 M 4 log Ψ ( n) c( Mn+ 1 Mc ) Ψ c ( M ) n+ 1 = Information gain score per earthquake (+ signs) + = score/event (x500) cumulative scores (x1) Cumulative Information gains magnitude

Algorithm of foreshock probability calculations in case of plural earthquakes in a cluster For plural earthquakes in a cluster, time differences, (days),epicenter separation (km),magnitude difference are transformed into the unit cube r i, j g i, j t i j ( t, r, g ) ( τ, ρ, γ ) [0,1] i, j i, j i, j i, j i, j i, j Probability p c is calculated sequentially 3 p 1 = f 1+ e f 1 p logit( p) ln p 3 3 3 1 k k k ( p ) { µ c ( x1, y1) } a1 bk i, j ck i, j dk i, j #{ i j} γ ρ τ logit = logit + + + + < i< j k= 1 k= 1 k= 1 µ (x, y) indicates probability of initial earthquake at location (x,y). Arithmetic mean of polynomials of the normalized space-time magnitude variables for all pairs of earthquakes (i < j) in a cluster. The coefficients a, b, c, d are estimated by the maximum likelihood method together with the AIC. Ogata, Utsu and Katsura, 1996, GJI) probability k ak bk ck dk 1 8.018-33.25-1.490-10.92 2 62.77 2.805 295.09 3-37.66-2.190-1161.5

Probability of isolated or first earthquakes will be foreshock probability Forecasted results for 1994 Mar 2011

Multiple earthquakes in a cluster Measuring inter-events concentrations in a cluster and magnitude increments Aftershocks Swarms Foreshocks F A S F F A S F

Normalized time, distance & magnitude difference in unit cube (t, r, g) (τ, ρ, γ) in [0,1] 3 Time Interval Transformation Epicenter Separation Transformation ρ = 1 exp{ min( r,50) / 20} Magnitude Difference Transformation where σ = 6709, σ = 0.4456 1 2

Forecasted sequence and evaluation (1994-2011Mar ) ----------------------------------------------------------------------------------------------------------------------------------------------------------- # F? #C Pc ENTRPY CU~ENT P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 ----------------------------------------------------------------------------------------------------------------------------------------------------------- 1-1 5.14% -0.01537-0.01537 5.14% 2-2 10.06% -0.06863-0.08400 7.46% 12.66% 3-1 18.58% -0.16822-0.25222 18.58% 4-1 10.71% -0.07592-0.32814 10.71% 5-1 0.15% 0.03586-0.29228 0.15% 6-1 1.70% 0.02028-0.27200 1.70% 7-4 9.50% -0.06243-0.33443 9.14% 11.17% 7.87% 9.82% 8-1 6.03% -0.02484-0.35927 6.03% 9-1 1.77% 0.01950-0.33977 1.77% 10 + 1 13.14% 1.27605 0.93628 13.14% M7.3 Foreshock of 9 Mar 2011 875 + 80 9.2% 0.923 28.649 6.7% 27.8% 27.7% 20.1% 14.0% 14.2% 13.6% 11.6% 15.7% 11.9% 10.1% 8.2% 10.1% 11.7% 10.9% 10.6% 11.5% 11.1% 9.9% 8.2% 7.2% 6.8% 7.6% 7.3% 7.4% 6.7% 7.0% 7.0% 8.0% 8.5% 8.6% 8.2% 8.0% 8.1% 8.4% 7.8% 7.3% 7.5% 7.8% 8.1% 8.1% 7.8% 7.4% 7.7% 7.8% 7.6% 7.2% 7.2% 6.9% 6.8% 6.7% 7.4% 8.0% 7.8% 7.6% 7.7% 8.3% 9.0% 8.7% 8.5% 8.6% 8.3% 8.4% 8.2% 8.2% 8.0% 7.9% 7.9% 8.4% 8.4% 8.6% 8.5% 8.6% 8.4% 8.2% 8.4% 8.3% 8.3% 8.1% 7.9% M9.0 880-11 2.44% 0.01266 31.60644 4.69% 4.77% 6.21% 3.42% 1.74% 1.24% 1.04% 0.90% 0.83% 0.97% 1.03% 881-16 2.11% 0.01604 31.62248 0.03% 0.25% 0.51% 0.83% 2.77% 2.21% 2.02% 3.19% 2.78% 2.50% 2.43% 3.07% 2.92% 2.74% 2.84% 2.68% 882-7 1.47% 0.02259 31.64507 0.06% 0.79% 1.70% 2.06% 1.90% 1.90% 1.88% 883-1 4.51% -0.00878 31.63629 4.51% 884-1 3.84% -0.00178 31.63451 3.84% 885 + 7 5.04% 0.31698 31.95149 6.89% 7.42% 4.88% 3.98% 3.56% 4.05% 4.49% 886-1 2.84% 0.00853 31.96002 2.84% 887-1 7.00% -0.03518 31.92483 7.00% 888-1 7.65% -0.04219 31.88264 7.65% 889-1 7.83% -0.04419 31.83845 7.83% ----------------------------------------------------------------------------------------------------------------------------------------------------------- 2*Entropy0 = 523.96; 2*Entropy = 460.29: 2* Entropy = 63.68

λ ETAS (, txy, ) Conditional intensity function of the ETAS model n φ ( txy,, ) = apν( t t) ρ( x x, y y), n # c, t t, a = 1 cn k kc k k k n k k= 1 k= 1 where, in Ogata et al. (GJI,1995); ν(t) is normalized density of foreshock survival function of foreshocks in Fig. 5a, and ρ(x,y) is normalized density of foreshock survival function of foreshocks in Fig. 5b. Moreover, pk n is defined in the paragraph including equation (18) of Ogata et al. (GJI,1996), Manitude frequency for the next event after the n-th earthquake in the cluster c small l arge ( ) ( ) ( ) GRdensity m = ψ m M + ψ m M ψ ( m M ), ψ ( m M ); normalized small l arge 0 0 { } = max, = 1,, + 0.45 ( n) M Mk k n Ψ ( m M ) = p ψ ( m M ) + (1 p ) ψ ( m M ) ( n) l arg e ( n) small ( n) nc 0 nc 0 GRdensity( m) otherwise If ψ(t) is normalized density of magnitude-differences between foreshocks in Fig. 5c of Ogata et al. (GJI,1995), { j } ψ ( m) = GRdensity m truncated @ max( M, j = 1,, k) + 0.45 k k = 1 { ψ } Ψ ( m n + 1) = GRdensity( m) (1 a ) ( m) n k k n if ( t, x, y)is connected to cn

Algorithm of foreshock probability calculations in case of plural earthquakes in a cluster For plural earthquakes in a cluster, time differences (days),epicenter separation r (km),magnitude difference gij are transformed into the unit cube ij Probability p c is calculated sequentially 3 3 3 1 k k k logit( p ) logit { µ c ( x1, y1) } a1 bk i, j ck i, j dk i, j #{ i j} γ ρ τ = + + + + < i< j k= 1 k= 1 k= 1 Here µ (x, y) indicates probability of initial earthquake at location (x,y),and the 2 nd term calculates arithmetic mean of polynomials of the normalised space-time magnitude variables for all pairs of earthquakes (i < j) in a cluster, where the coefficients a, b, c, d are as follows. t ij ( t, r, g ) ( τ, ρ, γ ) [0,1] i, j i, j i, j i, j i, j i, j Ogata, Utsu and Katsura, 1996, GJI) k ak bk ck dk 1 8.018-33.25-1.490-10.92 2 62.77 2.805 295.09 3-37.66-2.190-1161.5 3

Plural earthq. 1994-2011 Single earthq. Probability of foreshocks in log scale 100% 10% 1% 0.1% Forecasts and results 1994-2011 M 4 2011 March 9 M7.3 largest foreshock M main M 4 M9.0 6.5 0.01% Actual foreshock cluster Other type cluster Actual foreshock cluster Other type cluster Predicted probability Foreshock Others 2 5 10 20 50 100 Order of earthquake in a cluster Relative Frequency

Forecast Evaluation for 1994-2011 Mar. Actual foreshock cluster Other type cluster 100% 100% M7.3 Foreshock M7.0 Ibaragi-Ken of May 2008 Probability forecast (%) 10% 1% 0.1% Relative frequencies Probability forecast (%) 10% 1% Foreshocks. Others 0.1% M9.0 0.01% M main Probability forecast (%) 4.5, Mc 4.0 Earthquake number in a cluster 0.01% M 6.5 Mc 4.0 main Earthquake number in a cluster

Earthquake number in a cluster 100% 100% M7.3 Foreshock of 9 Mar 2011 Probability forecast (%) 10% 1% 0.1% Mc 4.0 Probability forecast (%) 10% 1% 0.1% M main 6.5 Mc 4.0 M9.0 0.01% 2 5 10 20 50 100 Earthquake number in a cluster 0.01% Earthquake number in a cluster 1994 年 - 2011 年 3 月

Southern California 1932 2006 M>=3.5 d Single-link-clustering = + ( c ) 0.3 (or 30km) 2 2 ST space time ent0 = 235.0 ent = 236.8 Predicted Foreshock probability 0-2.5 2.5-5. 5.- all -------+---------+----------+---------+---------+ Other 678 1296 655 2629 Fore 8 41 66 115 -------+---------+----------+---------+---------+ All 686 1337 721 2744 -------+---------+----------+---------+---------+ ratio% 1.2 3.1 9.2 4.2 # #fore % (+/-) #sw % (+/- ) #Maft #f+#s All ---------------------------------------------------------------------------- 1 115 4.2 (0.4) 200 7.3 (0.5) 2429 315 2744 2 44 7.8 (1.1) 200 35.3 (2.0) 322 244 566 3 23 8.3 (1.7) 110 39.7 (2.9) 144 133 277 4 16 9.6 (2.3) 67 40.1 (3.8) 84 83 167 5 13 10.8 (2.8) 51 42.5 (4.5) 56 64 120 6 6 6.7 (2.6) 40 44.4 (5.2) 44 46 90 7 5 7.6 (3.3) 28 42.4 (6.1) 33 33 66 8 3 5.9 (3.3) 23 45.1 (7.0) 25 26 51 9 3 6.8 (3.8) 19 43.2 (7.5) 22 22 44 10 2 4.9 (3.4) 17 41.5 (7.7) 22 19 41 ---------------------------------------------------------------------------- Probability forecast (%) M main 4.0, Mc 3.5 M 5.5, Mc 3.5 main aic0 = 6712.6 aic1 = 6656.8 Earthquake number in a cluster Earthquake number in a cluster

Global Forecast Result using NEIC-PDE catalog (M 4.7) 1973 ~ 1993: learning period, calibrating the forecasting parameters in Ogata et al. (1993, GJI) 1994 ~ 2013 April: forecasting period Isolated or 1 st quake in a cluster Plural earthquakes within a cluster Relative frequency Actual foreshock cluster Other type cluster 1994 2013 APR Relative frequency Actual foreshock cluster Other type cluster 1994 2013 APR Forecast probability (%) Forecast probability (%) Predicted probability 2.5% 5.0% + all +--------+----------+--------+--------+--------+ Foreshock 18610 6154 3721 28485 Others 580 304 267 1151 +--------+---------+--------+--------+--------+ 19190 6458 3988 29636 +--------+---------+--------+--------+--------+ Frequency ratio 3.0 4.7 6.7 3.9 2.5 5.0 10.0 15.0 All 2* LL = 121.1 +------+------+------+------+------+------+ 14 73 365 125 45 622 1222 1873 4999 1763 239 10096 +------+------+------+------+------+------+ 1236 1946 5364 1888 284 10718 +------+------+------+------+------+------+ 1.1 3.8 6.8 6.6 15.8 5.8 aic = 129.6

1998-2010 Relative frequency Actual foreshock cluster Other type cluster 1994 2013 APR M 2.0 Forecast probability (%) 2.5 5.0 10.0 15.0 All 2* LL = 195.4 +------+------+------+------+------+------+ 16 14 168 214 104 516 788 416 2043 1845 333 5425 +------+------+------+------+------+------+ 804 430 2211 2059 437 5941 +------+------+------+------+------+------+ 2.0 3.3 7.6 10.4 23.8 8.7 aic = -176.70

Global Forecasting using NEIC-PDE catalog (M 4.7) Single-link-clustering by connecting the space-time distance = + ( c ) 0.45 (or 50km) 2 2 ST space time 1973 ~ 1993: learning period, calibrating the forecasting parameters in Ogata et al. (1993, GJI) 1994 ~ 2013 April: forecasting period d Foreshock probability for isolated or the 1 st quake estimated from the NEIC data from 1973 1993 Given location of a future earthquake, probability is calculated by the interpolation using the including Delaunay triangle. 1973 1993 1994 2013 April probability probability

Global Forecast Result using NEIC-PDE catalog (M 4.7) 1973 ~ 1993: learning period, calibrating the forecasting parameters in Ogata et al. (1993, GJI) 1994 ~ 2013 April: forecasting period Isolated or 1 st quake in a cluster Plural earthquakes within a cluster Relative frequency Actual foreshock cluster Other type cluster 1994 2013 APR Relative frequency Actual foreshock cluster Other type cluster 1994 2013 APR Forecast probability (%) Forecast probability (%) Predicted 2.5% 5.0% + all probability Predicted probability 5% 10% 20% 30% + all +--------+----------+--------+--------+--------+ +-------+-------+------+------+------+------+ Foreshock 18610 6154 3721 28485 Foreshock 32 115 207 156 440 950 Others 580 304 267 1151 Others 1684 1237 1246 552 707 5426 +--------+---------+--------+--------+--------+ +-------+-------+------+------+------+------+ 19190 6458 3988 29636 1716 1352 453 708 1147 6376 +--------+---------+--------+--------+--------+ Frequency ratio +-------+-------+------+------+------+------+ 3.0 4.7 6.7 3.9 Frequency ratio 1.9 8.5 14.2 22.0 38.4 14.9

確率予測(%対数スケール)前震の確率予報 M>=4 孤立地震または群れの先頭の地震 1926-1993 1926-1993 M>=4 の地震 群発型 前震型 本震 余震型 F 100% 10% 推定 孤立地震または群れの先頭の地震が前震である予報確率 非線形変換 群れ内の地震の時間間隔 ( 日 ) A S F 群れ内の地震同士の距離 (km) F A 1926-1993 S F 100% 2011 年 3 月 9 日の M7.3 最大の前震 確率予測 最初の地震の予測の結果複数個の地震の群れの場合 1% 0.1% 0.01% M 4 群れの中の地震の順番 複合確率予測 群れ内の地震同士のマグニチュード差 確率予測(%対数スケール)2 5 10 20 50 100 1994-2011 実際に前震だったその他の場合 Logit { µ ( x, y) } Logit{ p c } 複数地震の予測の結果 1994-2011 10% 1% 0.1% 0.01% M9.0 M 本震 6.5 M 4 実際に前震だったその他の場合 Ogata, Y. and K. Katsura (2012) Prospective foreshock forecast experiment during the last 17 years, Geophys. J. Int. (in press)

Summary and suggestions It is conceivable that the b value of the G-R rule depends on the earthquake location when the earthquakes are small. When the earthquakes are small, such location-dependent b-value model performs a slightly better forecast performance than the reference model of b = 0.9 through out entire regions. But, there are many outlyingly negative information gain score which causes total predictive performance worse; this is clearly seen inland Japan experiments. We need to pursue the physics of aftershocks and elaborate the magnitude frequency models.

FORMLATION OF THE ISSUES Prediction models are based on the conditional intensity function of point process, { an event in a bin [, tt+ t] [, + ] [, + ] [ M, M+ M] t, t} P xx x yy y H F λ(, txym,, Ht, Ft ), t x y M for calculating probability of an earthquake occurring at a time t, a location (x, y), and a magnitude M, that conditional on history of occurrence records Ht = { ( tj, xj, yj, M j); tj < t } and can further depend on relevant information as exogenous records. Then we assume the separablity between space-time and magnitude components. λ t, t t t t t (, t x, y, M H F) λ(, t x, y H, F) γ ( M, t x, yh,, F) where ( t),, γ ( M t, x, y, H F ) dm = P M < Magnitude M + dm t, x, y, H F t t F t t, t Our task is to model γ ( M txyh,,, t F) and evaluate the probability and information gains relative to the reference model, γ (,,, ) 10 0 M txyh F = t, a b( M Mc ) t

Field et al. (2017, BSSA)

2 4 SPACE 1 3 TIME 5

Probability density Probability density { } ( n c) Magnitude Gap : M = max Mk ; k = 1,, n in cluster c + 0.5 Probability of M Mmax+0.5 of the next magnitude; n c = > If ( tn+ 1, xn+ 1, yn+ 1)is connected to c, bm bm 1 ( nc ) ( ) (, ( M ) 10 1 n c 10 Mc M ) ( M, ) ( 1,, n) (1 nc ) ( nc ) ( ) M nc M Ψ M M M = p + p bm bm 10 dm ( nc ) 10 dm Otherwise M M c ( ) 1 10 10 ( ) bm Ψ M = ( Mc, ) M ( n c) M M c M bm ( n c) dm Ψ ( M ) M,, 1 M n ( n c) { n+ 1 } p P M M in c log Probability distribution p n c M ( n c) p n c Magnitude Magnitude log likelihood-ratio = information gain: log LL 0 = # c log Magnitude Ψ ( n) c( Mn+ 1 Mc ) Ψ ( M ) c n= 1 c n+ 1

Ogata et al. (1995, 1996; GJI ) Ogata & Katsura (2012, GJI ; 2014, JGR) F A S Aftershocks Swarms Foreshocks time-differences (days) A S Epicenter-separations (km) F F F Magnitude-differences Probability of foreshocks in log scale 100% 10% 1% 0.1% 0.01% 3 3 3 1 pc 1 k k k ln = 1 µ ( x1, y1) ln + a1 + bkγi, j + ckρi, j + dkτi, j pc #{ i< j} µ ( x, y ) i< j k= 1 k= 1 k= 1 1 1 Probability of the first event of the cluster or isolated event will be FORESHOCK µ ( x, y ) 1 1 Transformed to unit cube ( τi, j, ρi, j, γi, j) 0% 10% Forecasts and results 1994-2011 M 4 Actual foreshock cluster Other type cluster 2 5 10 20 50 100 Order of earthquake in a cluster