(JAIST) (JSPS) PD URL:

Similar documents
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

I II III IV V

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

TOP URL 1

「産業上利用することができる発明」の審査の運用指針(案)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

provider_020524_2.PDF

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

数学概論I

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi


³ÎΨÏÀ



tnbp59-21_Web:P2/ky132379509610002944

TOP URL 1

研修コーナー

パーキンソン病治療ガイドライン2002

TOP URL 1

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

201711grade1ouyou.pdf

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

基礎数学I

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

Dynkin Serre Weyl

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

newmain.dvi

『共形場理論』

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

chap9.dvi

ohpmain.dvi

日本内科学会雑誌第102巻第4号




II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

: , 2.0, 3.0, 2.0, (%) ( 2.


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29


TOP URL 1

untitled

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

10:30 12:00 P.G. vs vs vs 2

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


読めば必ずわかる 分散分析の基礎 第2版

第90回日本感染症学会学術講演会抄録(I)


Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Ł\”ƒ-2005

gr09.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1 c Koichi Suga, ISBN

Z: Q: R: C:


Microsoft Word - 11問題表紙(選択).docx

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: 3. Green Cauchy

7

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T



Note.tex 2008/09/19( )

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

D 24 D D D

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1

Transcription:

(JAIST) (JSPS) PD URL: http://researchmap.jp/kihara Email: kihara.takayuki.logic@gmail.com 2012 9 5

ii 2012 9 4 7 2012 JAIST

iii #X X X Y X <N Y X {0, 1} N X x X <N x = x 0, x 1,..., x X, X σ τ σ α σ [[σ]] [S] λ σ X <N τ X <N (cocateatio) τ 1 τ = t σ τ σt σ X <N σ σ α = a 0, a 1,... α = a 0, a 1,..., a 1 σ, τ σ τ σ τ σ = τ σ σ {0, 1} N σ σ 1 σ X <N (clope) [[σ]] = {α X N : σ α} S X <N (ope) [S] = σ S [[σ]] (1/2, 1/2) {0, 1} N 0.α α {0, 1} N r (0, 1) 2 r

iv 1 = = 1 1.1...................................... 1 1.2..................................... 3 1.3.................................... 5 1.4............................... 8 1.5.................................. 11 1.6..................................... 15 2 19 2.1..................................... 19 2.2...................................... 23 2.3 vs............................ 23 2.4................................ 26 3 28 3.1................................. 28 3.2.................................. 30 3.3........................................ 34 3.4................................ 37 3.5..................................... 39 4 41 4.1.................................. 41 4.2.................................. 43 4.3................................... 45 4.4.................................. 45 4.5 /........................................ 50 5 56 5.1 1............................... 56 5.2 2............................... 58 5.3..................................... 61

v 6 64 6.1 = =.................................. 64 7 69 7.1.................................... 69 7.2................................. 74 7.3.................................. 74 77

28 3 3.1. 2 A B A B A 70% B 30% C p 1 p 3.1 ( ). p = (p ) N [0, 1] N 3 m p : {0, 1} <N [0, 1] {0, 1} N λ p p (Beroulli measure with bias p) 1. m p ( ) = 1 2. σ {0, 1} m p (σ0) = p m p (σ) 3. σ {0, 1} m p (σ1) = (1 p ) m p (σ) 3.1. p [0, 1] (p, p, p,... ) p λ p p #i(σ) σ {0, 1} <N i {0, 1} #{ < σ : σ() = i} σ {0, 1} <N [[σ]] λ p - λ p ([[σ]]) = m p (σ) = p #0(σ) (1 p) #1(σ). {0, 1} N [[σ]] m(σ) 3.1 ( ). m : {0, 1} <N [0, 1] m( ) = 1 σ {0, 1} <N

3.1 29 m(σ) = m(σ0) + m(σ1) {0, 1} N µ m σ {0, 1} <N µ m ([[σ]]) = m(σ) 0 p 1 1 p 0 1/p 1 1/(1 p) 0 q 0 1 q 1 d(σ0) = d(σ) (q 0 + q 1 ) + q 0 p, d(σ1) = d(σ) (q 0 + q 1 ) + q 1 1 p. p ( ) + (1 p) ( ) d(σ) = pd(σ0) + (1 p)d(σ1) µ 0 1 σ i {0, 1} µ([[σi]] [[σ]]) = µ([[σi]])/µ([[σ]]) 3.2 ( ). µ {0, 1} N d : {0, 1} <N σ {0, 1} <N µ- (µ-martigale) d(σ) = µ([[σ0]])d(σ0) + µ([[σ1]])d(σ1). µ([[σ]]) Ville 1.1 3.2. µ {0, 1} N q 1 d µ- N d(α ) q d( ) α µ- q 1. 1.1 d( ) = 1 S d(σ) q σ {0, 1} <N λ([s]) q 1 µ([s]) q = µ([[σ]]) q µ([[σ]])d(σ). σ S σ S σ S µ([[σ]])d(σ) d( ) = 1 k N S[k] = S {0, 1} <k k N a k = σ S[k] µ([[σ]])d(σ) 1 lim k a k 1. τ {0, 1} <N F {0, 1} <N τ - σ F µ([[σ]])d(σ) µ([[τ]])d(τ) F #F = 1 τ d(τ) σ τ d(σ) (µ([[τ]])/µ([[σ]]))d(τ) µ([[σ]])d(σ) µ([[τ]])d(τ)

30 3 #F = F + 1 τ F {σ : τ σ} i < 2 F i = {σ F : τi σ} µ([[σ]]) µ([[τ]]) d(σ) = µ([[σ]]) µ([[τ]]) d(σ) = µ([[τi]]) µ([[τ]]) µ([[σ]]) µ([[τi]]) d(σ) σ F i<2 σ F i i<2 σ F i µ([[τi]]) d(τi) = d(τ). µ([[τ]]) i<2 µ([[τ]]) σ F µ([[σ]])d(σ) µ([[τ]])d(τ) 3.3 ( ). µ {0, 1} N µ- A {0, 1} N {U } N µ(a) = if µ(u ), A U. {0, 1} N 0 3.3 ( ). µ {0, 1} N N {0, 1} N µ- (effectively µ-ull) {U } N N µ(u ) 2, N U. α {0, 1} N {α} µ- α µ- (Marti-Löf µ-radom) µ- 3.4. µ {0, 1} N α {0, 1} N 2 1. α µ- 2. µ- d : {0, 1} <N [0, ) lim sup d(α ) <.. A 70% B 30% A 10/7 B 10/3 3.2

3.2 31. 2 A B A B A B (p i ) i N 0 < lim if p lim sup p < 1. 3.5 ( 1948). (p i ) i N (q i ) i N [0, 1] λ p λ q (p i ) i N (q i ) i N 3 1. i=0 (p i q i ) 2 <. 2. N {0, 1} N λ p (N) = 0 λ q (N) = 0 3. λ p (N) = 0 λ q (N) = 1 N {0, 1} N. (3) (1) i=0 (p i q i ) 2 = p i, q i [ε, 1 ε] ε > 0 ν ((p i + q i )/2) i N i N ( ) 2 pi + q i = p i q i (1 + (p i q i ) 2 ) p i q i (1 + (p i q i ) 2 ) 2 4p i q i 4ε 2. ( ) 2 ( (1 pi ) + (1 q i ) (p i q i ) 2 ) = (1 p i )(1 q i ) 1 + 2 4(1 p i )(1 q i ) (1 p i )(1 q i ) (1 + (p i q i ) 2 ) 4ε 2. σ {0, 1} <N ν([[σ]]) 2 λ p ([[σ]])λ q ([[σ]]) 1 i=0 (1 + (p σ q σ ) 2 ) i=0 (p i q i ) 2 = k > 0 k N k σ {0, 1} <N ν([[σ]]) kλ p ([[σ]])λ q ([[σ]]) N k λ p ([[σ]]) λ q ([[σ]]) k σ ν([[σ]]) 2 kλ p ([[σ]]) 2 λ p (N k ) ν(n k) k 1 k 4ε 2 λ q ({0, 1} N \ N k ) 1/k λ q (N k ) 1 1/k N = N k>2 N 2 k λ p ( k>2 N 2 k ) 2 λ p (N) = 0

32 3 λ q ( k>2 2 N k ) 1 2 λ q (N) = lim λ q ( k>2 2 N k ) = 1 3.6 (Vovk 1987). λ p λ q (p i ) i N (q i ) i N =0 (p q ) 2 = α {0, 1} N 1. α λ p - λ q - 2. α λ q - λ p - 3.1. µ ν {0, 1} N 2 1. µ(n) = 0 ν(n) = 1 N {0, 1} N 2. µ- ν-. (2) (1): R ν ν- ν(r ν ) = 1 R ν {0, 1} N \ R µ µ(r µ ) = 1 µ(r ν ) = 0 (1) (2): µ(n) = 0 ν(n) = 1 N {0, 1} N N µ U N µ(u ) < 2 N U ν(u ) = 1 V U ν(v ) > 1 2 µ ν V N W = m> U {W } N µ(w ) 2 ν(w ) = 1 N W µ- {0, 1} N \ W ν- α µ- α N W α ν- α N W ( 3.6). 3.5 (3) (1) =0 (p q ) 2 = λ p (N) = 0 λ q (N) = 1 N {0, 1} N 3.1 λ p - λ q - 3.7 (Vovk 1987). λ p λ q (p i ) i N (q i ) i N =0 (p i q i ) 2 < α {0, 1} N λ p - λ q -. α {0, 1} N λ p - d lim d(α ) = d d(σ) = d(σ) λ p ([[σ]]) λ q ([[σ]]) λq([[σ]]) λ p ([[σ]]). d q (σ) = d(σ) λ p ([[σ]])/λ q ([[σ]]) λ q - lim d q (α ) = α λ q - lim d q (α ) < d(σ) = λ q ([[σ]])/λ p ([[σ]]) d lim d(α ) =

3.2 33 d λ p - λ q - d ( c N)( N) log d(α ) d (α ) + c. d N α() d η 0 1 i {0, 1} d(α i) (1 η ) d(α ), if d α(), ( ) 1 p d(α 1 + η d(α ), if i = 0 d α(), i) = p ( ) p 1 + η d(α ), if i = 1 d α(). 1 p d d η d 10% d 10 i {0, 1} d (α i) d (α ) η, if d α(), 1 q d (α η i) = + d (α ), if i = 0 d α(), q η q 1 q + d (α ), if i = 1 d α(). ξ d α() d(α ) η, η ((1 p )/p ), η (p /(1 p )) N 1 d(α ) = (1 + ξ k ). k=0 p q θ > 0 p i q i [θ, 1 θ] m = 1/θ N 0 1/p, 1/(1 p ) m ξ [ 1, m] i = 0 d α() d (α + 1) d (α ) = η 1 q q = ξ η 1 p p 1 q = ξ ξ + η = ξ η (q p ) q p q 1 (1 p )q (q p ) ξ ξ m 2 (q p ) ξ m 2 ξ p q. N 1 1 ξ k m 2 ξ k p k q k d (α ). k=0 k=0 c ξ [ 1.m] log(1 + ξ) ξ cξ 2 1 log d(α ) = log (1 + ξ k ) = k=0 1 1 log(1 + ξ k ) k=0 k 0 1 ξ k c k=0 ξ 2 k.

34 3 =0 (p i q i ) 2 < c t 0 m 2 (p i q i ) 2 t ct + c. i=0-1 m 2 ξ k p k q k m 2 1 (p i q i ) 2 1 1 ξk 2 c ξk 2 + c. k=0 i=0 k=0 k=0 log d(α ) d (α ) + c. lim d(α ) = lim d (α ) = b N N d (α ) > b d = d + max{c, b + 1} d d d 1 d d d lim d (α ) =. 3.3. 100% 0 1 1/2 0 1 0% 0 1 1 : 3 1 : 3 0% 0% 0 3.4 ( 1917). s [0, 1] A {0, 1} N s (s dimesioal outer Hausdorff measure) { } λ s (A) = lim if 2 s σ : A [S], ad S {0, 1}. σ S

3.3 35 1 1 1 2 0 1 1 0 0 0 3.1. A {0, 1} N s [0, 1] 1. t [0, s) λ t (A) = 2. t (s, 1] λ t (A) = 0 3.5 ( 1917). A {0, 1} N (Hausdorff dimesio) dim H (A) = if{s [0, 1] : λ s (A) = 0}. 3.2. A {0, 1} N µ- λ(a) = λ 1 (A) α A {0, 1} N α A α A α α 1 0 Ville 1.2 0 1 3.6 ( ). s [0, 1] A {0, 1} N s λ s (A) {0, 1} <N {S } N N A [S ], 2 s σ 2. σ S A {0, 1} N (effective Hausdorff dimesio) edim H (A) = if{s [0, 1] : λ s (A) }. α {0, 1} N dim H (α) = edim H ({α}) 3.8 (Lutz 2000). A {0, 1} N s [0, 1] 2 1. A s 2. d : {0, 1} <N [0, ) α A t > s lim sup d(α ) =. 2 (1 t)

36 3. (1) (2): s > dim H (A) s λ s (A) = 0 {[U ]} N N A [U ], σ U 2 s σ 2. U Ville 1.2 d U σ {0, 1} <N U σ τ σ τ U d (σ) d ( ) = σ U 2 s σ 2 σ τ U σ 2 s τ, if U σ, d (σ) = 2 (1 s)m, if σ m U for m < σ, 0, otherwise. d(σ) = =1 d (σ) d α A A N U k N α k U k k N t > s d(α k ) 2 (1 t) k d k(α k ) 2 (1 t) k = 2(1 s) k 2 (1 t) k = 2 (t s) k lim sup d(α ) =. 2 (1 t) (2) (1): t > s k N V k {0, 1} <N { } V k = σ {0, 1} <N d(σ) : 2 (1 t) σ 2k. U k V k U k τ σ τ V k σ V k. σ U k 2 t σ 2 k σ U k 2 t σ d(σ) 2 = (1 t) σ 2 k σ U k 2 σ d(σ) 2 k 1.1 (2) A N [U ] λ t (A) t > s edim H (A) s 3.9 (Ryabko 1984; Mayordomo 2002). A {0, 1} N edim H (A) = sup lim if α A K(α ).. α A lim if K(α )/ < s s Q k N N K(α ) s k k N U k = {σ {0, 1} <N : K(σ) s σ k}

3.4 37 {U k } k N 1.2 σ U k 2 (s σ k) σ U k 2 K(σ) 1. σ U k 2 s σ 2 k A k N [U k] edim H (A) s edim H (A) < s s Q {0, 1} <N {U } N A [U ] σ U 2 s σ 2 σ 1 U (σ, s σ ) L (σ,r) L 2 r = σ 1 U 2 s σ =1 σ U 2 s σ 2 = 1 2.1 (σ, s σ ) c N σ 1 U K(σ) s σ + c α A t N α t 1 U lim if K(α ) 3.1 (Mayordomo 2002). α {0, 1} N dim H (α) = lim if s K(α ). =1. 0% 1 3.4. α 0 1 α α 3.7 (Shao 1948). p [0, 1] (Shao etropy) H(p) [0, 1] H(p) = p log p (1 p) log(1 p).

38 3 3.10 (Lutz 2000). α {0, 1} N p [0, 1] Freq(α) = p α H(p) lim if K(α ) H(p).. σ {0, 1} <N i {0, 1} #i(σ) σ() = i σ p = 1/2 p > 1/2 δ (0, p 1/2] Freq(α) = p 1/2 + δ lim sup #0(α ) 1 2 + δ. d 0 2δ d(α ) = (1 + 2δ) #0(α ) (1 2δ) #1(α ) log d(α ) p 1/2 + δ lim sup log d(α ) #0(α ) #1(α ) = log(1 + 2δ) + log(1 2δ) ( ) #0(α ) 1 = 1 + log 2 + δ #1(α ) + log ( 1 2 δ ). ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 1 + 2 + δ log 2 + δ + 2 δ log 2 δ = 1 H 2 + δ ε > 0 1/2 + δ p δ H(1/2 + δ) < H(p) + ε δ (0, p 1/2] lim sup (log d(α ) (1 H(p) ε)) = lim sup d(α ) =. 2(1 H(p) ε) ε > 0 α H(p) 3.11 (Lutz 2003). p (0, 1) λ p p α {0, 1} N λ p - α p H(p) lim if K(α ) = H(p).

3.5 39. α λ p - Borel 1.3 Freq(ξ) p ξ {0, 1} N λ p - Freq(α) = p 3.10 dim H (α) H(p) dim H (α) H(p) s < H(p) d λ- λ p d p λ p - d p σ {0, 1} <N d p (σ) = 2 σ λ p ([[σ]]) d(σ). log λ p ([[σ]]) = #0(σ) log p + #1(σ) log(1 p) #i(σ) σ {0, 1} <N i {0, 1} Freq(α) = p #0(α )/ p log λ p ([[α ]])/ H(p) N s+log λ p ([[α ]]) < 0 N d p (α ) = 2 λ p ([[α ]]) d(α ) = 1 2 s+log λ p([α ]) d(α ) d(α ) > 2 (1 s) 2 (1 s) α λ p - lim sup d p (α ) < s < H(p) 3.8 dim H (α) H(p) 3.2 (Egglesto 1949). p [0, 1] {α {0, 1} N : Freq(α) = p} H(p). 3.5. 2 0.α [0, 1] 0 1 α {0, 1} N 3.8. α R Ir(α) r R ε > 0 c > 1 p q q c r α p q > 1 q r+ε. α R (irratioality measure) if Ir(α) if = (Liouville umber)

40 3 3.12 (Staiger 1999). α R 0 lim if K(α ) = 0.. N l K(α l) l log. β [0, 1] N β p q < 1 q 0 p q [0, 1] q 2 q J,p,q = [ p q 1 q, p q + 1 q ] β 2 m q 2 m N m = log q 1 [0, 1] 2 m J,p,q 2 J,p,q p 0 (, p, q) p 1 (, p, q) 2 m p 0 (, p, q) p 1 (, p, q) β m = β log q 1 p i (, p, q) β (, p, q) (, p, q) p i (, p, q) [i,, p, q] p i (, p, q) 11 i < 2 0i 2 + 2 log + 2 log p + 2 log q p q 2 + 2 log + 4 log q β N C(β log q 1 ) log q 1 2 + 2 log + 4 log q log q 1 2 log q log. β q β 0 3.3 (Oxtoby 1971). 0. 0 (fiite state dimesio)

64 6 6.1 = =. k N k = {0, 1,..., k 1} X X T : X X (X, T ) (cotiuous dyamical system) x X (T (x) : N) (X, T ) 1 (symbolic dyamical system) X (X i ) i<k x X (T (x) N ) It(x) = (i[x; ] : N) k N T (x) X i i i[x; ] i[t (x); ] = i[x; + 1] T k N (shift map) sh : k N k N α k N sh(α)() = α( + 1) It X,T = {It(x) : x X} sh (It X,T, sh) 6.1 ( ; Adler/Koheim/McAdrew 1965). X U H X (U) = log mi{#f : F U, ad X F}. X U V U V = {U V : U U, ad V V} T 1 U = {T 1 (U) : U U} T : X X

6.1 = = 65 1 H(X, T, U) = lim H X(U T 1 U T ( 1) U). (X, T ) (topological etropy) et(x, T ) = sup{h(x, T, U) : U X }. 6.2. S k N (shift ivariat) N α S sh (α) S S k N (subshift) S k N S k N (S, sh S ) et(s) = et(s, sh S ) 6.1. S k N log(#{α : α S}) et(s) = lim 6.1 (Simpso 201x). S k N K(α ) et(s) = dim H (S) = sup lim if α S 6.2. S k N dim H (S) = edim H (S). dim H (S) edim H (S) S s 0 S I {0, 1} <N S σ I[[σ]], 2 s σ 1 2. I (k) I k I (k) = {σ 1... σ k : σ 1,..., σ k I} S α S σ α α S I S σ α τ I α [[σ τ]] k N S [I (k) ] 2 s σ = σ I (k) (σ 1,...,σ k ) I k 2 s( σ1 + + σk ) = ( σ I 2 s σ 1 ) ( 2 s σ k σ 1 I σ k I σ I ) ( ) k = 2 s σ 2 k I {I (k) } k N S s edim H (S) dim H (S)

66 6 6.2 (Fursteberg 1967). S k N et(s) = dim H (S) 6.3. S k N et(s) dim H (S) ( 6.2). U S I {0, 1} <N U = {[[σ]] : σ I} U S α S I {σ i } i N I α = σ 0 σ 1 σ 2... N k N σ 0... σ k 1 α σ 0... σ k. m = max{ σ : σ I} N S I + m S s 0 S s lim 2 s #S λ s (S) = 0 S I {0, 1} <N S σ I[[σ]], 2 s σ < 1. s I ( ) j 2 s( σ0 + + σk ) = 2 s σ < (σ 0,...,σ k ) I <N j=1 σ I M S I (σ 0,..., σ k ) 2 s < 2 ms 2 s( σ 0 + + σ k ) 2 s #S < 2 ms M lim 2 s #S et(s) s ( 6.1). 3.9, 6.2, 6.2 σ I 6.3 ( ). (X, µ) T : X X (measure-preservig) µ- P X µ(t 1 (P )) = µ(p ) (X, T, µ) (measure-preservig dyamical system) X µ- P P H X,µ (P) = µ(p ) log µ(p ). P P P Q X P Q T 1 (P) H(X, T, µ, P) = lim 1 H X,µ(P T 1 P T ( 1) P)

6.1 = = 67 (X, T, µ) (measure-theoretic etropy) et(x, T, µ) = sup{h(x, T, µ, P) : P X }. 6.4. S k N S µ (ergodic) µ- P S sh 1 (P ) P µ(p ) {0, 1} µ (shift-ivariat) P S µ(sh 1 (P )) = µ(p ) (S, sh S, µ) et(s, µ) 6.3 (Shao/McMilla/Breima). S k N µ S µ- α S et(s, µ) = lim log µ([[α ]]). 6.4 ( ). S k N et(s) = max{et(s, µ) : µ k N }. 6.5 (Simpso 201x). S k N α S et(s) = dim H (S) = dim H (α) = lim if K(α ).. 6.4 S µ et(s) = et(s, µ) s < et(s) s + ε < et(s) ε > 0 Shao/McMilla/Breima 6.3 µ- α S N log µ([[α ]]) > s + ε T = {σ k : µ([[σ]]) < 2 (s+ε) σ } µ- α S N α [T ] N U U = {σ k : K(σ) < s σ }. #U 2 s N µ([u ] [T ]) = µ([u T ]) < 2 s 2 (s+ε) = 2 ε µ([u ] [T ]) < =1

68 6 / µ- α S N α [U ] [T ] µ- α S N α [U ] K(α ) s s < et(s) Q s Q s = {α S : ( c N)( ) K(α ) s c}. s < et(s) µ(q s ) = 1 Q = {Q s : s Q, ad s < et(s)} µ- 1 3.9 α Q S et(s) dim H (α) dim H (α) edim H (S) 6.1.